• 제목/요약/키워드: Tyrosine kinases

검색결과 116건 처리시간 0.024초

연어 뇌에서 N-Methyl-D-Aspartate 수용체 아단위 NR2A와 NR2B의 분포 (Distribution of N-Methyl-D-Aspartate Receptor Subunits NR2A and NR2B in Chum salmon Brain)

  • 진덕희;문일수
    • 생명과학회지
    • /
    • 제9권6호
    • /
    • pp.722-727
    • /
    • 1999
  • 본 연구는 연어 뇌 연접의 단백질구성에 대한 기초연구로서, 기억형성에 중요한 역활을 하는 NMDA 수용체의 분포와 PTK에 의한 인산화에 대하여 조사하였다. 본 실험에 사용한 연어 뇌의 PSD 분획에서는 Coomassie로 염색할 경우 20여개 분명한 단백질띠를 확인할 수 있었으며, 소량으로 존재하여 전체적으로 도말되어 보이는 펩타이드의 수는 알 수 없었다. 이들 중 180kD 크기의 단백질은 phosphotyrosine 특이성 항체에 상대적으로 잘 인식이 되었다. 또한 이 180 kDa의 단백질들은 쥐에 있어서의 NR2A 및 NR2B의 위치인 분자량 약 180kD의 위치와 동일한 것으로 보아 연어에 있어서도 후각기능에 관계하는 NR2A 및 NR2B가 존재함을 추정할 수 있다.

  • PDF

The GSK-$3{\beta}$/Cyclin D1 Pathway is Involved in the Resistance of Oral Cancer Cells to the EGFR Tyrosine Kinase Inhibitor ZD1839

  • Jeon, Nam Kyeong;Kim, Jin;Lee, Eun Ju
    • 대한의생명과학회지
    • /
    • 제20권2호
    • /
    • pp.85-95
    • /
    • 2014
  • Activation of the epidermal growth factor receptor (EGFR) and downstream signaling pathways have been implicated in causing resistance to EGFR-targeted therapy in solid tumors, including the head and neck tumors. To investigate the mechanism of antiproliferation to EGFR inhibition in oral cancer, we compared EGFR tyrosine kinase inhibitor (Gefitinib, Iressa, ZD1839) with respect to its inhibitory effects on three kinases situated downstream of EGFR: MAPK, Akt, and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$). We have demonstrated that ZD1839 induces growth arrest and apotosis in oral cancer cell lines by independent of EGFR-mediated signaling. An exposure of oral cancer cells to ZD1839 resulted in a dose dependent up-regulation of the cyclin-dependent kinase inhibitor p21 and p27, down regulation of cyclin D1, inactivation of GSK-$3{\beta}$ and of active MAPK. In resistant cells, GSK-$3{\beta}$ is constitutively active and its activity is negatively regulated primarily through Ser 9 phosphorylation and further enhanced by Tyr216 phosphorylation. These results showed that the resistance to the antiproliferative effects of ZD1839, in vitro was associated with uncoupling between EGFR and MAPK inhibition, and that GSK-$3{\beta}$ activation and degradation of its target cyclin D1 were indicators of high cell sensitivity to ZD1839. In conclusion, our data show that the uncoupling of EGFR with mitogenic pathways can cause resistance to EGFR inhibition in oral cancer.

Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction

  • Zhang, Lijun;Park, Jeoung Yun;Zhao, Dong;Kwon, Hak Cheol;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.615-629
    • /
    • 2021
  • An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SH-SY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.

Effect of Synthetic CaM and NFAT Oligodeoxynucleotide on MPP+-Stimulated Mesencephalic Neurons

  • Jihyun Park;Kyung Mi Jang
    • Journal of Interdisciplinary Genomics
    • /
    • 제5권2호
    • /
    • pp.35-41
    • /
    • 2023
  • Background: Ca2+ signaling plays a vital role in neuronal signaling and altered Ca2+ homeostasis in Parkinson's disease (PD). Overexpression of αSYN significantly promote the Ca2+-Calmodulin (CaM) activity and subsequent nuclear translocation of nuclear factor of activated T cells (NFAT) transcription factor in dopaminergic neurons of midbrain. However, the exact role of Ca2+-CaM and NFAT in PD pathology is yet to be elucidated. Methods: We designed the CaM-NFAT-oligodeoxynucleotide (ODN), a synthetic short DNA containing complementary sequence for NFAT transcription factor and CaM mRNA. Then, the effect of CaM-NFAT-ODN on 1-methyl-4-phenylpyridinium (MPP+)-mediated neurotoxicity was investigated in mimic PD model in vitro. Results: First, the expression of αSYN and CaM was strongly increased in substantia nigra (SN) of PD and the expression of tyrosine hydroxylase (TH) was strongly increased in control SN. Additionally, the expression of apoptosis marker proteins was strongly increased in SN of PD. Transfection of CaM-NFAT-ODN repressed CaM and pNFAT, the target genes of this ODN in rat embryo primary mesencephalic neurons. It also reduced ERK phosphorylation, a downstream target of these genes. These results demonstrated that CaM-NFAT-ODN operated successfully in rat embryo primary mesencephalic neurons. Transfection of CaM-NFAT-ODN repressed TH reduction, αSYN accumulation, and apoptosis by MPP+-induced neurotoxicity response through Ca2+ signaling and mitogen-activated protein kinases (MAPK) signaling. Conclusion: Synthetic CaM-NFAT-ODN has substantial therapeutic feasibility for the treatment of neurodegenerative diseases.

Towards a Structure-Function Relationship for Vascular Endothelial Growth Factor-B (VEGF-B)

  • Scrofani, Sergio D.B.;Nash, Andrew D.
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.543-551
    • /
    • 2001
  • The vascular endothelial growth factor (VEGF), or VEGF-A, is intimately involved in both physiological and pathological forms of angiogenesis. VEGF-A is now recognized as the founding member of a family of growth factors that has expanded to include VEGF-B, VEGF-C, VEGF-D, VEGF-E, and placental growth factor (PIGF). This family of cytokines binds differentially to at least three receptor tyrosine kinases, however, the extent to which family members other than VEGF-A contribute to physiological and pathological angiogenesis remains unclear. Issues that are of relevance include uncertainty regarding the consequences of signaling through VEGF - RI in particular, and the ability of some family members to heterodimerize, leading to the possibility ofheterodimeric receptor complexes. Structural characterization is one approach that can be used to address these issues, however, the vast majority of previous structure-function studies have only focused on VEGF-A. While these studies may provide some clues regarding the structural basis of the interaction of other family members with their receptors, studies using the ligands themselves are clearly required if highly specific interactions are to be revealed. With the recent progress toward refolding and purifying substantial' quantities of other VEGF family members, such structural studies are now possible. Here, these ~ssues are addressed with a particular emphasis on VEGF-B and its receptors.

  • PDF

개옻나무 추출물의 IgE 매개성 알레르기 반응 억제 효과 및 기전 (Rhus Trichocarpa Suppresses IgE-mediated Allergic Response In Vitro and In Vivo)

  • 임한나;김영미
    • 생약학회지
    • /
    • 제44권2호
    • /
    • pp.118-124
    • /
    • 2013
  • Mast cells is the key effector cells for IgE-mediated allergic responses. In this study, we investigated whether Rhus trichocarpa extract (RT) inhibited IgE-mediated allergic responses in mast cells and an allergic animal model. We further tried to find its mechanism of action in mast cells. We found that RT suppressed antigen-stimulated degranulation and production of TNF-${\alpha}$ and IL-4 in rat basophilic leukemia (RBL)-2H3 mast cells and bone marrow-derived mast cells (BMMC), as well as IgE-mediated passive cutaneous anaphylaxis (PCA) in mice. As the mechanism of action of RT, it inhibited the activation of spleen tyrosine kinase (Syk), a pivotal signaling molecule for activation of mast cells and that of LAT, a downstream adaptor molecule of Syk in $Fc{\varepsilon}RI$-mediated signal pathways. RT also suppressed the activation of mitogen-activated protein (MAP) kinases and Akt. The current results demonstrated for the first time that RT has the anti-allergic effect through inhibiting degranulation and secretion of cytokines by suppression of Syk in antigen-stimulated mast cells. Therefore, RT might be useful for allergic diseases.

Defective Anks1a disrupts the export of receptor tyrosine kinases from the endoplasmic reticulum

  • Park, Soochul
    • BMB Reports
    • /
    • 제49권12호
    • /
    • pp.651-652
    • /
    • 2016
  • EphA2 has been implicated in amplifying ErbB2 tumorigenic signaling. One protein that interacts with EphA2 is the Anks1a PTB adaptor. However, the precise role of Anks1a in EphA2-mediated tumorigenesis is unclear. We demonstrated that Anks1a localizes to the ER upon phosphorylation and that the Ankyrin repeats and PTB of Anks1a bind to EphA2 and Sec23, respectively. Thus, Anks1a facilitates the selective packaging of EphA2 into COPII vesicles. Additionally, Anks1a knockout mice, a phenocopy of EphA2 knockout mice, exhibited markedly reduced ErbB2-induced breast tumorigenesis. Strikingly, ErbB2 did not localize to the cell surface following Anks1a knockdown in primary mammary tumor cells over-expressing ErbB2. Importantly, EphA2 was critical for stabilizing ErbB2 through complex formation, but its interaction with Anks1a also facilitated ErbB2 loading into COPII carriers. These findings suggest a novel role for Anks1a in the molecular pathogenesis of breast tumors and possibly other human diseases.

배초향으로부터 Grb2-Shc domain 결합저해 물질의 분리 (Isolation of Grb2-Shc Domain Binding Inhibition Component from Agastache rugosa)

  • 이은숙;안병태;이새봄;김혜경;복성해;정태숙
    • 생약학회지
    • /
    • 제30권4호
    • /
    • pp.404-408
    • /
    • 1999
  • SH2 domains and their associated catalytic or noncatalytic proteins constitute critical signal transduction targets for drug discovery. Grb2 associates with phosphotyrosine sites of the activated receptors or Shc via their SH2 domain to link receptor tyrosine kinases to ras signalling. Blocking of the Grb2-Shc complex may be to intervene the oncogenic signal transduction pathways and to develop a new antitumor drug. In the search for blockers of Grb2 SH2-Shc interaction, Lutein, a family of carotenoids, was isolated from the extract of the leaf of Agastache rugosa O. Kuntze as SH2 domain antagonists. The $IC_{50}$ of Lutein against Grb2-Shc binding was $6.8\;{\mu}M$.

  • PDF

Sclerotiorin and Isochromophilone IV: Inhibitors of Grb2-Shc Interaction, Isolated from Penicillium multicolor F1753

  • Nam, Ji-Youn;Son, Kwang-Hee;Kim, Hyae-Kyeong;Han, Mi-Young;Kim, Sung-Uk;Choi, Jung-Do;Kwon, Byoung-Mog
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.544-546
    • /
    • 2000
  • Grb2 is an important adaptor protein in the mitogenic Ras signaling pathway of receptor tyrosine kinases, and contains one SH2 domain and two SH3 domains. The SH2 domain binds to specific phosphotyrosine motifs on receptors or adaptor proteins such as Shc. The SH2 domain antagonists may lead to blocking of the oncogenic Ras signals and to developing new antitumor agents. In the course of screening SH2 antagonists from natural sources, cslerotiorin (1) and isochromophilone IV (2) were isolated from a strain, Penicillium multicolor F1753, and their structures were established by NMR spectral data. The metabolites significantly inhibited the binding between the Grb2-SH2 domain and phosphopeptide derived from the Shc protein, with $IC_{50}$ values of $22{\;}\mu\textrm{M}{\;}and{\;}48{\;}\mu\textrm{M}$ for (1) and (2), respectively. The compounds are the first nonpeptidic inhibitors of the SH2 domain from a natural source.

  • PDF

In Vivo Expression of the PTB-deleted Odin Mutant Results in Hydrocephalus

  • Park, Sunjung;Lee, Haeryung;Park, Soochul
    • Molecules and Cells
    • /
    • 제38권5호
    • /
    • pp.426-431
    • /
    • 2015
  • Odin has been implicated in the downstream signaling pathway of receptor tyrosine kinases, such as the epidermal growth factor and Eph receptors. However, the physiologically relevant function of Odin needs to be further determined. In this study, we used Odin heterozygous mice to analyze the Odin expression pattern; the targeted allele contained a ${\beta}$-geo gene trap vector inserted into the 14t intron of the Odin gene. Interestingly, we found that Odin was exclusively expressed in ependymal cells along the brain ventricles. In particular, Odin was highly expressed in the subcommissural organ, a small ependymal glandular tissue. However, we did not observe any morphological abnormalities in the brain ventricles or ependymal cells of Odin null-mutant mice. We also generated BAC transgenic mice that expressed the PTB-deleted Odin (dPTB) after a floxed GFP-STOP cassette was excised by tissue-specific Cre expression. Strikingly, Odin-dPTB expression played a causative role in the development of the hydrocephalic phenotype, primarily in the midbrain. In addition, Odin-dPTB expression disrupted proper development of the subcommissural organ and interfered with ependymal cell maturation in the cerebral aqueduct. Taken together, our findings strongly suggest that Odin plays a role in the differentiation of ependymal cells during early postnatal brain development.