Browse > Article
http://dx.doi.org/10.14348/molcells.2015.2288

In Vivo Expression of the PTB-deleted Odin Mutant Results in Hydrocephalus  

Park, Sunjung (Department of Biological Science, Sookmyung Women's University)
Lee, Haeryung (Department of Biological Science, Sookmyung Women's University)
Park, Soochul (Department of Biological Science, Sookmyung Women's University)
Abstract
Odin has been implicated in the downstream signaling pathway of receptor tyrosine kinases, such as the epidermal growth factor and Eph receptors. However, the physiologically relevant function of Odin needs to be further determined. In this study, we used Odin heterozygous mice to analyze the Odin expression pattern; the targeted allele contained a ${\beta}$-geo gene trap vector inserted into the 14t intron of the Odin gene. Interestingly, we found that Odin was exclusively expressed in ependymal cells along the brain ventricles. In particular, Odin was highly expressed in the subcommissural organ, a small ependymal glandular tissue. However, we did not observe any morphological abnormalities in the brain ventricles or ependymal cells of Odin null-mutant mice. We also generated BAC transgenic mice that expressed the PTB-deleted Odin (dPTB) after a floxed GFP-STOP cassette was excised by tissue-specific Cre expression. Strikingly, Odin-dPTB expression played a causative role in the development of the hydrocephalic phenotype, primarily in the midbrain. In addition, Odin-dPTB expression disrupted proper development of the subcommissural organ and interfered with ependymal cell maturation in the cerebral aqueduct. Taken together, our findings strongly suggest that Odin plays a role in the differentiation of ependymal cells during early postnatal brain development.
Keywords
ependymal cells; hydrocephalus; Odin; subcommissural organ;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Baas, D., Meiniel, A., Benadiba, C., Bonnafe, E., Meiniel, O., Reith, W., and Durand, B. (2006). A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells. Eur. J. Neurosci. 24, 1020-1030.   DOI   ScienceOn
2 Blatt, E.N., Yan, X.H., Wuerffel, M.K., Hamilos, D.L., and Brody, S.L. (1999). Forkhead transcription factor HFH-4 expression is temporally related to ciliogenesis. Am. J. Respir. Cell Mol. Biol. 21, 168-176.   DOI   ScienceOn
3 Breunig, J.J., Arellano, J.I., and Rakic, P. (2010). Cilia in the brain: going with the flow. Nat. Neurosci. 13, 654-655.   DOI   ScienceOn
4 Carlen, M., Meletis, K., Goritz, C., Darsalia, V., Evergren, E., Tanigaki, K., Amendola, M., Barnabe-Heider, F., Yeung, M.S., Naldini, L., et al. (2009). Forebrain ependymal cells are Notchdependent and generate neuroblasts and astrocytes after stroke. Nat. Neurosci. 12, 259-267.   DOI   ScienceOn
5 Cottrell, G.T., and Ferguson, A.V. (2004). Sensory circumventricular organs: central roles in integrated autonomic regulation. Regul. Pept. 117, 11-23.   DOI   ScienceOn
6 Dietrich, P., Shanmugasundaram, R., Shuyu, E., and Dragatsis, I. (2009). Congenital hydrocephalus associated with abnormal subcommissural organ in mice lacking huntingtin in Wnt1 cell lineages. Hum. Mol. Genet. 18, 142-150.
7 Ghersi, E., Noviello, C., and D'Adamio, L. (2004). Amyloid-beta protein precursor (AbetaPP) intracellular domain-associated protein-1 proteins bind to AbetaPP and modulate its processing in an isoform-specific manner. J. Biol. Chem. 279, 49105-49112.   DOI   ScienceOn
8 Guirao, B., Meunier, A., Mortaud, S., Aguilar, A., Corsi, J.M., Strehl, L., Hirota, Y., Desoeuvre, A., Boutin, C., Han, Y.G., et al. (2010). Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat. Cell Biol. 12, 341-350.   DOI   ScienceOn
9 Huh, M.S., Todd, M.A., and Picketts, D.J. (2009). SCO-ping out the mechanisms underlying the etiology of hydrocephalus. Physiology (Bethesda) 24, 117-126.   DOI   ScienceOn
10 Ihrie, R.A., and Alvarez-Buylla, A. (2011). Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 70, 674-686.   DOI   ScienceOn
11 Jacquet, B.V., Salinas-Mondragon, R., Liang, H., Therit, B., Buie, J.D., Dykstra, M., Campbell, K., Ostrowski, L.E., Brody, S.L., and Ghashghaei, H.T. (2009). FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development. 136, 4021-4031.   DOI   ScienceOn
12 Kajiho, H., Fukushima, S., Kontani, K., and Katada, T. (2012). RINL, guanine nucleotide exchange factor Rab5-subfamily, is involved in the EphA8-degradation pathway with odin. PLoS One 7, e30575.   DOI
13 Lacar, B., Young, S.Z., Platel, J.C., and Bordey, A. (2010). Imaging and recording subventricular zone progenitor cells in live tissue of postnatal mice. Front. Neurosci. 4.
14 Kim, Y., Song, E., Choi, S., and Park, S. (2007). Engineering lacZ Reporter gene into an ephA8 bacterial artificial chromosome using a highly efficient bacterial recombination system. J. Biochem. Mol. Biol. 40, 656-661.   DOI   ScienceOn
15 Kim, J., Lee, H., Kim, Y., Yoo, S., Park, E., and Park, S. (2010). The SAM domains of Anks family proteins are critically involved in modulating the degradation of EphA receptors. Mol. Cell. Biol. 30, 1582-1592.   DOI   ScienceOn
16 Kristiansen, T.Z., Nielsen, M.M., Blagoev, B., Pandey, A., and Mann, M. (2004). Mouse embryonic fibroblasts derived from Odin deficient mice display a hyperproliiferative phenotype. DNA Res. 11, 285-292.
17 Lang, B., Song, B., Davidson, W., MacKenzie, A., Smith, N., McCaig, C.D., Harmar, A.J., and Shen, S. (2006). Expression of the human PAC1 receptor leads to dose-dependent hydrocephalus-related abnormalities in mice. J. Clin. Invest. 116, 1924-1934.   DOI   ScienceOn
18 Ortloff, A.R., Vio, K., Guerra, M., Jaramillo, K., Kaehne, T., Jones, H., McAllister, J.P., 2nd, and Rodriguez, E. (2013). Role of the subcommissural organ in the pathogenesis of congenital hydrocephalus in the HTx rat. Cell Tissue Res. 352, 707-725.   DOI   ScienceOn
19 Paez-Gonzalez, P., Abdi, K., Luciano, D., Liu, Y., Soriano-Navarro, M., Rawlins, E., Bennett, V., Garcia-Verdugo, J.M., and Kuo, C.T. (2011). Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron 71, 61-75.   DOI   ScienceOn
20 Pandey, A., Blagoev, B., Kratchmarova, I., Fernandez, M., Nielsen, M., Kristiansen, T.Z., Ohara, O., Podtelejnikov, A.V., Roche, S., Lodish, H.F., et al. (2002). Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases. Oncogene 21, 8029-8036.   DOI   ScienceOn
21 Park, E., Kim, Y., Noh, H., Lee, H., Yoo, S., and Park, S. (2013). EphA/ephrin-A signaling is critically involved in region-specific apoptosis during early brain development. Cell Death Differ. 20, 169-180.   DOI   ScienceOn
22 Perez-Figares, J.M., Jimenez, A.J., and Rodriguez, E.M. (2001). Subcommissural organ, cerebrospinal fluid circulation, and hydrocephalus. Microsc. Res. Tech. 52, 591-607.   DOI
23 Picketts, D.J. (2006). Neuropeptide signaling and hydrocephalus: SCO with the flow. J. Clin. Invest. 116, 1828-1832.   DOI   ScienceOn
24 Qin, S., Liu, M., Niu, W., and Zhang, C.L. (2011). Dysregulation of Kruppel-like factor 4 during brain development leads to hydrocephalus in mice. Proc. Natl. Acad. Sci. USA 108, 21117-21121.   DOI
25 Ramos, C., Fernandez-Llebrez, P., Bach, A., Robert, B., and Soriano, E. (2004). Msx1 disruption leads to diencephalon defects and hydrocephalus. Dev. Dyn. 230, 446-460.   DOI   ScienceOn
26 Rodriguez, E.M., Rodriguez, S., and Hein, S. (1998). The subcommissural organ. Microsc. Res. Tech. 41, 98-123.   DOI
27 Shin, J., Gu, C., Park, E., and Park, S. (2007). Identification of phosphotyrosine binding domain-containing proteins as novel downstream targets of the EphA8 signaling function. Mol. Cell. Biol. 27, 8113-8126.   DOI   ScienceOn
28 Whitsett, J.A., and Tichelaar, J.W. (1999). Forkhead transcription factor HFH-4 and respiratory epithelial cell differentiation. Am. J. Respir. Cell Mol. Biol. 21, 153-154.   DOI   ScienceOn
29 Tong, J., Sydorskyy, Y., St-Germain, J.R., Taylor, P., Tsao, M.S., and Moran, M.F. (2013). Odin (ANKS1A) modulates EGF receptor recycling and stability. PLoS One 8, e64817.   DOI
30 Uhlik, M.T., Temple, B., Bencharit, S., Kimple, A.J., Siderovski, D.P., and Johnson, G.L. (2005). Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J. Mol. Biol. 345, 1-20.   DOI   ScienceOn
31 Yu, X., Ng, C.P., Habacher, H., and Roy, S. (2008). Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet. 40, 1445-1453.   DOI   ScienceOn
32 Zhang, D., Stumpo, D.J., Graves, J.P., DeGraff, L.M., Grissom, S.F., Collins, J.B., Li, L., Zeldin, D.C., and Blackshear, P.J. (2006). Identification of potential target genes for RFX4_v3, a transcription factor critical for brain development. J. Neurochem. 98, 860-875.   DOI   ScienceOn
33 Zhao, C., Suh, H., and Gage, F.H. (2009). Notch keeps ependymal cells in line. Nat. Neurosci. 12, 243-245.   DOI   ScienceOn