• Title/Summary/Keyword: Tyrosinase-related protein

Search Result 191, Processing Time 0.033 seconds

Inhibitory Effect of Ginkgo biloba Extracts on Melanin Biosynthesis (은행 열매 추출물의 멜라닌 생성 저해효과)

  • Kim, Yoon Suk;Lee, Young Hwa;Lee, Jin Young;Yi, Yong sub
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.383-389
    • /
    • 2015
  • In this study, we investigated the inhibitory effect on melanin synthesis of Ginkgo biloba seed oil. The results showed 9.96% inhibitory effect scavenging activity on DPPH and showed a value of 1.33 mM of $FeSO_4$ at a concentration of 0.06% in DMSO by using FRAP assay. G. biloba seed oil inhibited tyrosinase activity up tp 37.72% and suppressed the biosynthesis melanin up to 48.02% at 0.06% in B16/F10 mouse melanoma cell. In G. biloba seed oil treated group tyrosinase, TRP-1, TRP-2 and MITF gen expression levels significantly decreased compared to the contral group at a concentration of 0.04% and 0.06%. In conclusion, these results indicated that G. biloba seed oil extract have a good antimelanogenetic effects.

Stimulating effect of modified Goa-Gi-Um herbal remedy on melanogenesis in B16F10 melanoma cells (B16F10 멜라노마세포에서 과기음가미방의 멜라닌 생성 촉진 효과)

  • Moon, Na-Rang;Kim, Se Yoon;Lee, Jin Hyuk;Lee, Jung Bok;Park, Sunmin
    • The Korea Journal of Herbology
    • /
    • v.28 no.3
    • /
    • pp.69-74
    • /
    • 2013
  • Objectives : Since hypopigmentation is known to increase the risk of skin cancer, melanogenesis in the skin needs to be regulated. Here, we evaluated the melanogenesis stimulatory effects of a modified Goagium herbal remedy (HR) and HR+ox bile (Bos taurus domesticus) extract (OBE) to address hypopigmentation disorders. Methods : B16F10 melanoma cells were treated with different dosages of HR and HR+OBE for 24 to 48 h after 1 h of 10 nM ${\alpha}$-melanocyte stimulating hormone (${\alpha}$-MSH). After the treatment, cell viability, tyrosinase activity, melanin synthesis and the expression of genes related to melanin synthesis were measured and the regulation of the ${\alpha}$-MSH signalling through cAMP responding element binding protein (CREB) was determined. Results : HR and HR+OBE with the ranges of $15{\sim}100{\mu}g/mL$ did not affect cell viability in melanoma cells. The 1 h treatment of HR+OBE (50 and $100{\mu}g/mL$) potentiated the phosphorylation of CREB by enhancing ${\alpha}$-MSH signaling and its 24 h treatment increased CREB expression. Consistent with CREB potentiation, their treatment for 24 h, the expression of microphthalmia-associated transcription factor (MIFT), tyrosinase, tyrosinase related protein (TRP)-1 and TRP-2 were increased in realtime PCR. Ultimately, the 48 h treatment of HR+OBE (50 and $100{\mu}g/mL$) increased tyrosniase activity and melanin contents in the melanoma cells in comparison to the control. Conclusions : HR+OBE (50 and $100{\mu}g/mL$) increases melanin synthesis in B16F10 melanoma cells via the stimulation of tyrosinase activity and expression of MIFT, tyrosinase, TRP-1 and TRP-2. HR+OBE can be used as the a possible treatment for hypopigmentation of the skin.

Effect of Methanolic Extract from Biota Orientalis Folium on Melanin Synthesis (측백엽(側柏葉) 메탄올 추출물이 멜라닌 형성에 미치는 영향)

  • Lee, Soo-Hyeong;Hong, Seok-Hoon;Hwang, Chung-Yeon;Kim, Nam-Kwen
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.662-670
    • /
    • 2005
  • Recently many efforts were focused to understand the mechanical insights of melanogenesis to develop the agents for hyper-pigmentation and hypo-pigmentation. In the melanin bio-synthetic pathway, tyrosinase is the rate limiting enzyme, and ${\alpha}$-melanocyte stimulating hormone(MSH) stimulates melanogenesis and enhances the melanin synthesis and the tyrosinase activity. The author has analyzed the effects of Biota Orientalis Folium on the basal melanogenic activities of B16 mouse melanoma cells, and on the ${\alpha}$-MSH or tyrosinase-induced melanogenesis. Biota Orientalis Folium alone markedly suppressed melanin content and tyrosinase activity in a dose-dependent manner. The decrease of cell propagation was observed in B16 cells treated with 200${\mu}$g/ml dose of Biota Orientalis Folium, indicating that Biota Orientalis Folium-induced depigmenting effect was caused by inhibition of melanin synthesis, not due to destruction of B16 cells. Pretreatment of the cells with Biota Orientalis Folium also suppressed the increase of ${\alpha}$-MSH (10 nM) induced melanin content and tyrosinase activity. Biota Orientalis Folium inhibited the revelation of ${\alpha}$-MSH induced tyrosinase protein and tyrosinase related protein and mRNA of tyrosinase in B16 melanoma cell. These results suggest that Biota Orientalis Folium inhibits melanogenesis and abrogates ${\alpha}$-MSH and tyrosinase-induced melanogenesis in B16 melanoma cells.

Inhibitory Effects of Novel Hexapeptide on Melanogenesis by Regulating MITF in B16F10 Melanoma Cells (B16F10 멜라닌 세포에서 신규 헥사펩타이드의 MITF 조절을 통한 멜라닌 생성 저해 효과)

  • Lee, Eung Ji;Kim, Jandi;Jeong, Min Kyeong;Lee, Young Min;Chung, Yong Ji;Kim, Eun Mi
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.11-22
    • /
    • 2020
  • In this study, we investigated anti-pigmentation effect of a hexapeptide. The peptide significantly reduced melanin contents and inhibited tyrosinase activity in a dose-dependent manner, in which tyrosinase is a key enzyme in melanogenesis. The peptide also significantly reduced the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1) and their upstream transcription factor, microphthalmia-associated transcription factor (MITF). Furthermore, the peptide suppressed the phosphorylation level of cAMP-response element binding protein (CREB), a transcription factor of MITF, and increased the phosphorylation level of extracellular signal-regulated kinase (ERK), a kinase mediates MITF phosphorylation and proteasomal degradation. The peptide significantly inhibited the expression of Rab27A, Melanophilin, and MyosinVa, the components of motor complex involved in intracellular movement of melanosome. These results suggest that Hexapeptide could be used as an effective whitening agent that has inhibitory effect on melanin production and melanosome transport by regulating expression and degradation of MITF in melanocytes.

Anti-melanogenic Effects of Cnidium japonicum in B16F10 Murine Melanoma Cells (B16F10 피부 흑색종세포에서 갯사상자 추출물의 멜라닌 합성 저해 효과)

  • Jo, Hyun Jin;Karadeniz, Fatih;Oh, Jung Hwan;Seo, Youngwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.331-339
    • /
    • 2022
  • Melanin is a pigment produced by melanocytes to protect the skin from external stimuli, mainly ultraviolet (UV) rays. However, abnormal and excessive production of melanin causes hyperpigmentation disorders, such as freckles, age spots, and discoloration. Natural cosmeceuticals are a new trend for treating or preventing hyperpigmentation due to fewer side effects and biocompatibility. In this context, the current study focused on Cnidium japonicum, a halophyte with several uses in folk medicine, to evaluate its potential as a skin-whitening agent. The effect of C. japonicum extract (CJE) on melanin production was analyzed in melanogenesis-stimulated B16F10 melanoma cells. The results showed that CJE successfully inhibited the oxidation of tyrosine and L-DOPA by tyrosinase and subsequently decreased the production of the key enzymes responsible for melanin production: tyrosinase, tyrosinase-related protein-1, and protein-2. This effect was confirmed by decreased intracellular and extracellular melanin levels in B16F10 melanoma cells after CJE treatment. Further experiments to elucidate the action mechanism revealed that CJE treatment suppressed melanin production by inhibiting the activation of glycogen synthase kinase 3 β (GSKβ)/β-catenin and protein kinase A (PKA)/cAMP-response element binding protein (CREB) pathways, which are the upstream activators of melanogenesis. In conclusion, the present study suggests that C. japonicum is a potential natural source of bioactive substances for the development of novel cosmeceuticals that can act against hyperpigmentation.

Inhibitory effect of Gastrodia elata Blume extract on alpha-melanocyte stimulating hormone-induced melanogenesis in murine B16F10 melanoma

  • Shim, Eugene;Song, Eunju;Choi, Kyoung Sook;Choi, Hyuk-Joon;Hwang, Jinah
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.173-179
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Gastrodia elata Blume (GEB), a traditional herbal medicine, has been used to treat a wide range of neurological disorders (e.g., paralysis and stroke) and skin problems (e.g., atopic dermatitis and eczema) in oriental medicine. This study was designed to investigate whether GEB extract inhibits melanogenesis activity in murine B16F10 melanoma. MATERIALS/METHOD: Murine B16F10 cells were treated with 0-5 mg/mL of GEB extract or $400{\mu}g/mL$ arbutin (a positive control) for 72 h after treatment with/without 200 nM alpha-melanocyte stimulating hormone (${\alpha}$-MSH) for 24 h. Melanin concentration, tyrosinase activity, mRNA levels, and protein expression of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (Trp)1, and Trp2 were analyzed in ${\alpha}$-MSH-untreated and ${\alpha}$-MSH-treated B16F10 cells. RESULTS: Treatment with 200 nM ${\alpha}$-MSH induced almost 2-fold melanin synthesis and tyrosinase activity along with increased mRNA levels and protein expression of MITF, tyrosinase, Trp1 and Trp2. Irrespective of ${\alpha}$-MSH stimulation, GEB extract at doses of 0.5-5 mg/mL inhibited all these markers for skin whitening in a dose-dependent manner. While lower doses (0.5-1 mg/mL) of GEB extract generally had a tendency to decrease melanogenesis, tyrosinase activity, and mRNA levels and protein expression of MITF, tyrosinase, Trp1, and Trp2, higher doses (2-5 mg/mL) significantly inhibited all these markers in ${\alpha}$-MSH-treated B16F10 cells in a dose-dependent manner. These inhibitory effects of the GEB extract at higher concentrations were similar to those of $400{\mu}g/mL$ arbutin, a well-known depigmenting agent. CONCLUSIONS: These results suggest that GEB displays dose-dependent inhibition of melanin synthesis through the suppression of tyrosinase activity as well as molecular levels of MITF, tyrosinase, Trp1, and Trp2 in murine B16F10 melanoma. Therefore, GEB may be an effective and natural skin-whitening agent for application in the cosmetic industry.

Inhibitory Effect of Fritillaria Verticillata Willd. var. Thunbergii Bak Ethanol Extract on Melanin Biosynthesis (절패모(浙貝母) 에탄올 추출물의 멜라닌 생성 억제 효과)

  • Ha, Tae-Kwang;Lee, Boo-Kyun;Yoon, Jeong-Rock;Mun, Yeun-Ja;Woo, Won-Hong;Park, Seong-Ha;Lee, Jang-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.510-515
    • /
    • 2011
  • This study was conducted to evaluate the depigmenting properties of ethanol extract from a Fritillaria verticillata Willd. (EFV) in B16F10 cells. Fritillaria verticillata Willd., a perennial herbaceous plant, has been used as a stimulator of mammary gland, expectorant, blood pressure depressant, antitussive agents in Korean herbal medicine. In the present study, we observed that melanin synthesis of B16F10 cells were significantly decreased by EFV without cytotoxicity. However, EFV could not suppress tyrosinase activity in B16F10 cells and mushroom tyrosinase activity. Furthermore, EFV did not effect the protein expression of tyrosinase, tyrosinase-related protein -1 (TRP-1), and TRP-2. These results suggest that EFV inhibited melanin synthesis and the hypopigmentary effect of EVF was not due to regulation of tyrosinase protein.

Effects of phenolics from Oplismenus undulatifolius in α-MSH-stimulated B16F10 melanoma cells

  • Park, Hye-Jin;Lee, Eun-Ho;Jung, Hee-Young;Kang, In-Kyu;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.89-93
    • /
    • 2020
  • In this study, the efficacy of melanoma cell B16F10 was investigated using the Korean native plant Oplismenus undulatifolius (OU). First, the cell viability of the extract was more than 90% when treated with 15 ㎍/mL of phenolics from OU. The results showed that melanin biosynthesis and cellular tyrosinase synthesis were inhibited by treatment with α-melanocyte-stimulating hormone-stimulated mouse melanoma cell B16F10 at a concentration of 15 ㎍/mL of phenolics for cell-line efficacy. The expression of tyrosinase, tyrosinase-related protein (TRP)-1, TRP-2, and microphthalmia transcription factor (MITF) protein was confirmed by western blot to investigate the effect of phenolics from OU on melanin biosynthesis. When treated with phenolics from OU 15 ㎍/mL, tyrosinase, TRP-1, TRP-2, and MITF decreased the protein expression level. In particular, tyrosinase, TRP-1, and MITF inhibited the production amount to a level similar to that of the non-treated normal group, indicating that the effect was excellent. Therefore, phenolics from OU acts as an inhibitor of tyrosinase, TRP-1, TRP-2, and its transcription factor MITF, and participates in melanin biosynthesis mechanism. These results suggested the potential for development as a material.

Inhibition of Melanogenesis by Ramalin from the Antarctic Lichen Ramalina terebrata (남극 지의류 Ramalina terebrata로부터 분리된 라말린의 미백효과)

  • Chang, Yun-Hee;Ryu, Jong-Seong;Lee, Sang-Hwa;Park, Sun-Gyoo;Bhattarai, Hari Datta;Yim, Joung-Han;Jin, Moo-Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.3
    • /
    • pp.247-254
    • /
    • 2012
  • Ramalin (${\gamma}$-glutamyl-N'-(2-hydroxyphenyl)hydrazide) isolated from the Antarctic lichen Ramalina terebrata has been shown to have strong antioxidant activities in the previous study. To investigate additional activities of ramalin, we studied the effects of ramalin on melanogenesis in melan-a cells, a non-tumorigenic melanocyte cell line. At a non-cytotoxic concentration, ramalin dramatically decreased melanin synthesis in melan-a cells in a dose-dependent manner, which was more potent than arbutin, a well-known tyrosinase inhibitor. Ramalin inhibited cell-free tyrosinase activity directly and intracellular tyrosinase activity as well. Its inhibitory mechanisms on melanin production were further assessed, and we found that ramalin significantly decreased the protein levels of melanogenic enzymes such as tyrosinase, tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2). However, the mRNA levels of these enzymes were not altered. In a clinical study, application of 0.2 % ramalin on human skin significantly improved the degree of skin brightness after 3 weeks. In conclusion, ramalin has strong anti-melanogenic activity that is exerted both by the direct inhibition of tyrosinase activity and by down-regulation of melanogenic proteins. Furthermore, ramalin showed skin brightening effect in a clinical study. Collectively, these results suggest that ramalin may be a useful inhibitor for melanogenesis in skin.

Effect on Melanogenic Protein Expression of Acanthoic Acid isolated from Acanthopanax koreanum in Murine B16 Melanoma

  • Ham, Young-Min;Park, Soo-Yeong;Kim, Kil-Nam;Oh, Dae-Ju;Yoon, Weon-Jong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16-16
    • /
    • 2011
  • Melanogenesis is a well-known physiological response of human skin that may occur because of exposure to ultraviolet light, for genetic reasons, or due to other causes. In our effectors to find new skin lightening agents, acanthoic acid (AA) was investigated for its ability to inhibit melanogenesis. The effects of AA isolated from A.koreanumun the expression of $\alpha$-MSH-induced melanogenic factors (tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and MITF (microphthalmla-associated transcriptional factor)) were investigated in murine B16F10 melanoma cells. The results indicate that AA was an effective inhibitor of melanogenesis in B16F10 cells. To elucidate the mechanism of the effect of AA on melanogenesis, we performed Western blotting for melanogenic proteins. AA inhibited melanogenic factors (tyrosinase, TRP-1, TRP-2) expressions. In this study, we also confirmed that AA decreased the protein level of MITF proteins, which would lead to a decrease of tyrosinase and related genes in B16F10 melanoma cells. In order to apply AA to the human skin, the cytotoxic effects of the AA were determined by MTT assays using human keratinocyte HaCaT cells. Based on these results, we suggest that AA be considered possible anti-melanogenic agent and might be effective against hyperpigmentation disorders for the topical application.

  • PDF