Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.5.331

Anti-melanogenic Effects of Cnidium japonicum in B16F10 Murine Melanoma Cells  

Jo, Hyun Jin (Department of Food and Nutrition, College of Medical and Life Sciences, Silla University)
Karadeniz, Fatih (Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University)
Oh, Jung Hwan (Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University)
Seo, Youngwan (Division of Convergence on Marine Science, Bioscience, Korea Maritime and Ocean University)
Kong, Chang-Suk (Department of Food and Nutrition, College of Medical and Life Sciences, Silla University)
Publication Information
Journal of Life Science / v.32, no.5, 2022 , pp. 331-339 More about this Journal
Abstract
Melanin is a pigment produced by melanocytes to protect the skin from external stimuli, mainly ultraviolet (UV) rays. However, abnormal and excessive production of melanin causes hyperpigmentation disorders, such as freckles, age spots, and discoloration. Natural cosmeceuticals are a new trend for treating or preventing hyperpigmentation due to fewer side effects and biocompatibility. In this context, the current study focused on Cnidium japonicum, a halophyte with several uses in folk medicine, to evaluate its potential as a skin-whitening agent. The effect of C. japonicum extract (CJE) on melanin production was analyzed in melanogenesis-stimulated B16F10 melanoma cells. The results showed that CJE successfully inhibited the oxidation of tyrosine and L-DOPA by tyrosinase and subsequently decreased the production of the key enzymes responsible for melanin production: tyrosinase, tyrosinase-related protein-1, and protein-2. This effect was confirmed by decreased intracellular and extracellular melanin levels in B16F10 melanoma cells after CJE treatment. Further experiments to elucidate the action mechanism revealed that CJE treatment suppressed melanin production by inhibiting the activation of glycogen synthase kinase 3 β (GSKβ)/β-catenin and protein kinase A (PKA)/cAMP-response element binding protein (CREB) pathways, which are the upstream activators of melanogenesis. In conclusion, the present study suggests that C. japonicum is a potential natural source of bioactive substances for the development of novel cosmeceuticals that can act against hyperpigmentation.
Keywords
B16F10; Cnidium japonicum; melanin; skin whitening; tyrosinase;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Nguyen, N. T. and Fisher, D. E. 2019. MITF and UV responses in skin: From pigmentation to addiction. Pigment Cell Melanoma Res. 32, 224-236.   DOI
2 Vachtenheim, J. and Borovansky, J. 2010. 'Transcription physiology' of pigment formation in melanocytes: Central role of MITF. Exp. Dermatol. 19, 617-627.   DOI
3 Zhao, S. J., Jia, H., Xu, X. L., Bu, W. B., Zhang, Q., Chen, X., Ji, J. and Sun, J. F. 2021. Identification of the role of Wnt/β-catenin pathway through integrated analyses and in vivo experiments in vitiligo. Clin. Cosmet. Investig. Dermatol. 14, 1089.   DOI
4 Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F. and Saboury, A. A. 2019. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 34, 279-309.   DOI
5 Park, J. Y., Lee, J. Y., Lee, D. Y., Kim, H. D., Kim, G. S., Lee, S. E., Seo, K. H., Park, J. Y., Lee, J. Y., Lee, D. Y., Kim, H. D., Kim, G. S., Lee, S. E. and Seo, K. H. 2019. Melanogenesis inhibitory effect of steamed Platycodon grandiflorum on B16F10 Cells. Asian J. Beauty Cosmetol. 17, 37-46.   DOI
6 Wang, R. F., Ko, D., Friedman, B. J., Lim, H. W. and Mohammad, T. F. 2022. Disorders of hyperpigmentation. Part I. Pathogenesis and clinical features of common pigmentary disorders. J. Am. Acad. Dermatol. In Press.
7 Kimura, Y., Sumiyoshi, M., Taniguchi, M. and Baba, K. 2008. Antitumor actions of a chromone glucoside cnidimoside A isolated from Cnidium japonicum. J. Nat. Med. 62, 308-313.   DOI
8 Sotiropoulou, G., Zingkou, E. and Pampalakis, G. 2021. Redirecting drug repositioning to discover innovative cosmeceuticals. Exp. Dermatol. 30, 628-644.   DOI
9 Obaid, R. J., Mughal, E. U., Naeem, N., Sadiq, A., Alsantali, R. I., Jassas, R. S., Moussa, Z. and Ahmed, S. A. 2021. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: a systematic review. RSC Adv. 11, 22159-22198.   DOI
10 Venkatesan, H., Soundhararajan, R. and Srinivasan, H. 2022. Interaction of various types of bisphenols with enzymes involved in melanin synthesis. Toxicol. Environ. Health Sci. 14, 19-24.   DOI
11 Yang, E. J., Yim, E. Y., Song, G., Kim, G. O. and Hyun, C. G. 2009. Inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophages by Jeju plant extracts. Interdiscip. Toxicol. 2, 245.   DOI
12 Hwang, Y. S., Oh, S. W., Park, S. H., Lee, J., Yoo, J. A., Kwon, K., Park, S. J., Kim, J., Yu, E., Cho, J. Y. and Lee, J. 2019. Melanogenic effects of maclurin are mediated through the activation of cAMP/PKA/CREB and p38 MAPK/CREB signaling pathways. Oxid. Med. Cell. Longev. 2019, 9827519.
13 Pillaiyar, T., Manickam, M. and Namasivayam, V. 2017. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 32, 403.   DOI
14 Bahraman, A. G., Jamshidzadeh, A., Keshavarzi, M., Arabnezhad, M. R., Mohammadi, H. and Mohammadi-Bardbori, A. 2021. α-Melanocyte-stimulating hormone triggers melanogenesis via activation of the aryl hydro- carbon receptor pathway in B16F10 mouse melanoma cells. Int. J. Toxicol. 40, 153-160.   DOI
15 Bellei, B., Flori, E., Izzo, E., Maresca, V. and Picardo, M. 2008. GSK3β inhibition promotes melanogenesis in mouse B16 melanoma cells and normal human melanocytes. Cell. Signal. 20, 1750-1761.   DOI
16 Bellei, B., Pitisci, A., Catricala, C., Larue, L. and Picardo, M. 2011. Wnt/β-catenin signaling is stimulated by α-melanocyte-stimulating hormone in melanoma and melanocyte cells: implication in cell differentiation. Pigment Cell Melanoma Res. 24, 309-325.   DOI
17 Brenner, M. and Hearing, V. J. 2008. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 84, 539-549.   DOI
18 Lee, S. G., Karadeniz, F., Seo, Y. and Kong, C. S. 2017. Anti-melanogenic effects of flavonoid glycosides from Limonium tetragonum (Thunb.) Bullock via inhibition of tyrosinase and tyrosinase-related proteins. Molecules 22, 1480.   DOI
19 Nautiyal, A. and Wairkar, S. 2021. Management of hyperpigmentation: Current treatments and emerging therapies. Pigment Cell Melanoma Res. 34, 1000-1014.   DOI
20 Lambert, M. W., Maddukuri, S., Karanfilian, K. M., Elias, M. L. and Lambert, W. C. 2019. The physiology of melanin deposition in health and disease. Clin. Dermatol. 37, 402-417.   DOI