• Title/Summary/Keyword: Type III secretion systems

Search Result 9, Processing Time 0.029 seconds

A Marine Bacterium with Animal-Pathogen-Like Type III Secretion Elicits the Nonhost Hypersensitive Response in a Land Plant

  • Boyoung Lee;Jeong-Im Lee;Soon-Kyeong Kwon;Choong-Min Ryu;Jihyun F. Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.584-591
    • /
    • 2023
  • Active plant immune response involving programmed cell death called the hypersensitive response (HR) is elicited by microbial effectors delivered through the type III secretion system (T3SS). The marine bacterium Hahella chejuensis contains two T3SSs that are similar to those of animal pathogens, but it was able to elicit HR-like cell death in the land plant Nicotiana benthamiana. The cell death was comparable with the transcriptional patterns of H. chejuensis T3SS-1 genes, was mediated by SGT1, a general regulator of plant resistance, and was suppressed by AvrPto1, a type III-secreted effector of a plant pathogen that inhibits HR. Thus, type III-secreted effectors of a marine bacterium are capable of inducing the nonhost HR in a land plant it has never encountered before. This suggests that plants may have evolved to cope with a potential threat posed by alien pathogen effectors. Our work documents an exceptional case of nonhost HR and provides an expanded perspective for studying plant nonhost resistance.

Lactobacillus brevis KB290 Enhances IL-8 Secretion by Vibrio parahaemolyticus-Infected Caco-2 Cells

  • Yakabe, Takafumi;Shimohata, Takaaki;Takahashi, Akira
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.118-124
    • /
    • 2013
  • Vibrio parahaemolyticus in uncooked seafood causes acute gastroenteritis. The microorganism has two sets of type III secretion systems and two hemolysins. When it injects its effector proteins into a host cell via type III secretion system 1, one of the type III secretion systems induces secretion of interleukin (IL)-8, a proinflammatory chemokine, through the phosphorylation of ERK 1/2 and p38 MAPK. Although probiotics have beneficial effects on hosts and can help control some infectious diseases, there is little research on the efficacy of probiotics in V. parahaemolyticus infection. Here we pretreated V. parahaemolyticus-infected human intestinal epithelial cells with heat-killed Lactobacillus brevis KB290, a probiotic isolated from fermented vegetables (traditional Japanese pickles) and utilized as an ingredient of beverages and supplementary foods, and demonstrated its efficacy in enhancing IL-8 secretion from V. parahaemolyticus-infected cells. Among the three heat-killed lactic acid bacterial strains we tested, L. brevis KB290 induced the highest level of IL-8 secretions in the infected cells. Relative to control cells (Caco-2 cells pretreated with PBS), V. parahaemolyticus-infected Caco-2 cells pretreated with heat-killed L. brevis KB290 secreted IL-8 earlier, although concentrations were similar 450min after infection. Heat-killed L. brevis KB290 pretreatment also induced earlier ERK 1/2 phosphorylation, greater p38 MAPK phosphorylation, and enhanced IL-8 mRNA expression. Heat-killed L. brevis KB290 accelerated IL-8 secretion, a host cell immune response, in V. parahaemolyticus-infected cells. We consider this to be beneficial because IL-8 plays an important defensive role against infection, and would contribute to the repair of injured epithelial cells.

Comparative Analyses of Four Complete Genomes in Pseudomonas amygdali Revealed Differential Adaptation to Hostile Environments and Secretion Systems

  • Jung, Hyejung;Kim, Hong-Seop;Han, Gil;Park, Jungwook;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.167-174
    • /
    • 2022
  • Pseudomonas amygdali is a hemibiotrophic phytopathogen that causes disease in woody and herbaceous plants. Complete genomes of four P. amygdali pathovars were comparatively analyzed to decipher the impact of genomic diversity on host colonization. The pan-genome indicated that 3,928 core genes are conserved among pathovars, while 504-1,009 are unique to specific pathovars. The unique genome contained many mobile elements and exhibited a functional distribution different from the core genome. Genes involved in O-antigen biosynthesis and antimicrobial peptide resistance were significantly enriched for adaptation to hostile environments. While the type III secretion system was distributed in the core genome, unique genomes revealed a different organization of secretion systems as follows: type I in pv. tabaci, type II in pv. japonicus, type IV in pv. morsprunorum, and type VI in pv. lachrymans. These findings provide genetic insight into the dynamic interactions of the bacteria with plant hosts.

Functional pathogenomics of Burkhozderia glumae (oral)

  • Kim, Jinwoo;Kim, Suhyun;Yongsung Kang;Jang, Ji-Youn;Kim, Jung-Gun;Lim, Jae-Yoon;Kim, Minkyun;Ingyu Hwang
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.66.1-66
    • /
    • 2003
  • The aim of this study was to characterize the interactions of rice and Burkholderia glumae, a causal agent of bacterial grain rot of rice, at molecular levels using whole genomic sequences and to identify genes important for pathogenicity and symptom development. To do these, we sequenced whole genome of the bacterium and constructed cosmid clone profiles. We generated pools of mutants using various transposons and determined mutation sites by sequencing rescued plasmids. We focused on studying toxoflavin biosynthetic genes, quorum sensing regulation, and Hrp type III protein secretion systems. We found that two possible operons consisting of five genes are involved in toxoflavin biosynthesis and their expression is regulated by quorum sensing and LysR-type regulator, ToxR. We have isolated the nn PAI of B. glumae and characterized by mutational analyses. The hrp cluster resembled most the putative Type III secretion systems of B. pseudomallei, which is the causative agent of melioidosis, a serious disease of man and animals. The Hrp PAI core region showed high similarity to that of Ralstonia solanacearum and Xanthomonas campestris, however some aspects were dissimilar.

  • PDF

Complete genome sequence of Salmonella enterica strain K_SA184, multidrug resistance bacterium isolated from lamb (Ovis aries)

  • Kim, Hyeri;Cho, Jae Hyoung;Cho, Jin Ho;Song, Minho;Shin, Hakdong;Kim, Sheena;Kim, Eun Sol;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.194-197
    • /
    • 2021
  • Salmonella enterica is a representative foodborne pathogen in the world. The S. enterica strain K_SA184 was isolated from the lamb (Ovis aries), which was collected from a local traditional market in South Korea. In this study, the S. enterica strain K_SA184 was sequenced using PacBio RS II and Illumina NextSeq 500 platforms. The final complete genome of the S. enterica strain K_SA184 consist of one circular chromosome (4,725,087 bp) with 52.3% of guanine + cytosine (G + C) content, 4,363 of coding sequence (CDS), 85 of tRNA, and 22 of rRNA genes. The S. enterica strain K_SA184 genome includes encoding virulence genes, such as Type III secretion systems and multidrug resistance related genes.

Cell Death Mediated by Vibrio parahaemolyticus Type III Secretion System 1 Is Dependent on ERK1/2 MAPK, but Independent of Caspases

  • Yang, Yu-Jin;Lee, Na-Kyung;Lee, Na-Yeon;Lee, Jong-Woong;Park, Soon-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.903-913
    • /
    • 2011
  • Vibrio parahaemolyticus, which causes gastroenteritis, wound infection, and septicemia, has two sets of type III secretion systems (TTSS), TTSS1 and TTSS2. A TTSS1-deficient vcrD1 mutant of V. parahaemolyticus showed an attenuated cytotoxicity against HEp-2 cells, and a significant reduction in mouse lethality, which were both restored by complementation with the intact vcrD1 gene. V. parahaemolyticus also triggered phosphorylation of mitogen-activated protein kinases (MAPKs) including p38 and ERK1/2 in HEp-2 cells. The ability to activate p38 and ERK1/2 was significantly affected in a TTSS1-deficient vcrD1 mutant. Experiments using MAPK inhibitors showed that p38 and ERK1/2 MAPKs are involved in V. parahaemolyticus-induced death of HEp-2 cells. In addition, caspase-3 and caspase-9 were processed into active forms in V. parahaemolyticus-exposed HEp-2 cells, but activation of caspases was not essential for V. parahaemolyticus-induced death of HEp-2 cells, as shown by both annexin V staining and lactate dehydrogenase release assays. We conclude that secreted protein(s) of TTSS1 play an important role in activation of p38 and ERK1/2 in HEp-2 cells that eventually leads to cell death via a caspase-independent mechanism.

Genome Wide Analysis of the Potato Soft Rot Pathogen Pectobacterium carotovorum Strain ICMP 5702 to Predict Novel Insights into Its Genetic Features

  • Mallick, Tista;Mishra, Rukmini;Mohanty, Sasmita;Joshi, Raj Kumar
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.102-114
    • /
    • 2022
  • Pectobacterium carotovorum subsp. carotovorum (Pcc) is a gram-negative, broad host range bacterial pathogen which causes soft rot disease in potatoes as well as other vegetables worldwide. While Pectobacterium infection relies on the production of major cell wall degrading enzymes, other virulence factors and the mechanism of genetic adaptation of this pathogen is not yet clear. In the present study, we have performed an in-depth genome-wide characterization of Pcc strain ICMP5702 isolated from potato and compared it with other pathogenic bacteria from the Pectobacterium genus to identify key virulent determinants. The draft genome of Pcc ICMP5702 contains 4,774,457 bp with a G + C content of 51.90% and 4,520 open reading frames. Genome annotation revealed prominent genes encoding key virulence factors such as plant cell wall degrading enzymes, flagella-based motility, phage proteins, cell membrane structures, and secretion systems. Whereas, a majority of determinants were conserved among the Pectobacterium strains, few notable genes encoding AvrE-family type III secretion system effectors, pectate lyase and metalloprotease in addition to the CRISPR-Cas based adaptive immune system were uniquely represented. Overall, the information generated through this study will contribute to decipher the mechanism of infection and adaptive immunity in Pcc.

Lessons from the Sea : Genome Sequence of an Algicidal Marine Bacterium Hahella chehuensis (적조 살상 해양 미생물 Hahella chejuensis의 유전체 구조)

  • Jeong Hae-Young;Yoon Sung-Ho;Lee Hong-Kum;Oh Tae-Kwang;Kim Ji-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Harmful algal blooms (HABs or red tides), caused by uncontrolled proliferation of marine phytoplankton, impose a severe environmental problem and occasionally threaten even public health. We sequenced the genome of an EPS-producing marine bacterium Hahella chejuensis that produces a red pigment with the lytic activity against red-tide dinoflagellates at parts per billion level. H. chejuensis is the first sequenced species among algicidal bacteria as well as in the order Oceanospirillales. Sequence analysis indicated a distant relationship to the Pseudomonas group. Its 7.2-megabase genome encodes basic metabolic functions and a large number of proteins involved in regulation or transport. One of the prominent features of the H. chejuensis genome is a multitude of genes of functional equivalence or of possible foreign origin. A significant proportion (${\sim}23%$) of the genome appears to be of foreign origin, i.e. genomic islands, which encode genes for biosynthesis of exopolysaccharides, toxins, polyketides or non-ribosomal peptides, iron utilization, motility, type III protein secretion and pigment production. Molecular structure of the algicidal pigment was determined to be prodigiosin by LC-ESI-MS/MS and NMR analyses. The genomics-based research on H. chejuensis opens a new possibility for controlling algal blooms by exploiting biotic interactions in the natural environment and provides a model in marine bioprospecting through genome research.

Comparative Genome Analysis Reveals Natural Variations in the Genomes of Erwinia pyrifoliae, a Black Shoot Blight Pathogen in Apple and Pear

  • Lee, Gyu Min;Ko, Seyoung;Oh, Eom-Ji;Song, Yu-Rim;Kim, Donghyuk;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.428-439
    • /
    • 2020
  • Erwinia pyrifoliae is a Gram-negative bacterial plant pathogen that causes black shoot blight in apple and pear. Although earlier studies reported the genome comparison of Erwinia species, E. pyrifoliae strains for such analysis were isolated in 1996. In 2014, the strain E. pyrifoliae EpK1/15 was newly isolated in the apple tree showing black shoot blight in South Korea. This study aimed to better understand the similarities and differences caused by natural variations at the genomic level between newly isolated E. pyrifoliae EpK1/15 and the strain Ep1/96, which were isolated almost 20 years apart. Several comparative genomic analyses were conducted, and Clusters of Orthologous Groups of proteins (COG) database was used to classify functional annotation for each strain. E. pyrifoliae EpK1/15 had similarities with the Ep1/96 strain in stress-related genes, Tn3 transposase of insertion sequences, type III secretion systems, and small RNAs. The most remarkable difference to emerge from this comparison was that although the draft genome of E. pyrifoliae EpK1/15 was almost conserved, Epk1/15 strain had at least three sorts of structural variations in functional annotation according to COG database; chromosome inversion, translocation, and duplication. These results indicate that E. pyrifoliae species has gone natural variations within almost 20 years at the genomic level, and we can trace their similarities and differences with comparative genomic analysis.