Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.06.2020.0097

Comparative Genome Analysis Reveals Natural Variations in the Genomes of Erwinia pyrifoliae, a Black Shoot Blight Pathogen in Apple and Pear  

Lee, Gyu Min (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST))
Ko, Seyoung (School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST))
Oh, Eom-Ji (Graduate School of Biotechnology, Kyung Hee University)
Song, Yu-Rim (Department of Horticultural Biotechnology, Kyung Hee University)
Kim, Donghyuk (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST))
Oh, Chang-Sik (Graduate School of Biotechnology, Kyung Hee University)
Publication Information
The Plant Pathology Journal / v.36, no.5, 2020 , pp. 428-439 More about this Journal
Abstract
Erwinia pyrifoliae is a Gram-negative bacterial plant pathogen that causes black shoot blight in apple and pear. Although earlier studies reported the genome comparison of Erwinia species, E. pyrifoliae strains for such analysis were isolated in 1996. In 2014, the strain E. pyrifoliae EpK1/15 was newly isolated in the apple tree showing black shoot blight in South Korea. This study aimed to better understand the similarities and differences caused by natural variations at the genomic level between newly isolated E. pyrifoliae EpK1/15 and the strain Ep1/96, which were isolated almost 20 years apart. Several comparative genomic analyses were conducted, and Clusters of Orthologous Groups of proteins (COG) database was used to classify functional annotation for each strain. E. pyrifoliae EpK1/15 had similarities with the Ep1/96 strain in stress-related genes, Tn3 transposase of insertion sequences, type III secretion systems, and small RNAs. The most remarkable difference to emerge from this comparison was that although the draft genome of E. pyrifoliae EpK1/15 was almost conserved, Epk1/15 strain had at least three sorts of structural variations in functional annotation according to COG database; chromosome inversion, translocation, and duplication. These results indicate that E. pyrifoliae species has gone natural variations within almost 20 years at the genomic level, and we can trace their similarities and differences with comparative genomic analysis.
Keywords
black shoot blight; Erwinia pyrifoliae; genome; orthologous groups;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Beer, S. V., Kim, J.-H., Zumoff, C. H., Bogdanove, A. J., Laby, R. J., Tanii, A., Tamura, O., Gustafson, H. L., Momol, T. and Aldwinckle, H. S. 1996. Characterization of bacteria that cause "bacterial shoot blight of peard" in Japan. Acta Hortic. 411:179-182.   DOI
2 Bosl, M. and Kersten, H. 1991. A novel RNA product of the tyrT operon of Escherichia coli. Nucleic Acids Res. 19:5863-5870.   DOI
3 Bozcal, E. 2019. Insight into the mobilome of Escherichia coli. In: The universe of Escherichia coli, ed. by M. S. Erjavec, pp. 333-747. IntechOpen, London, UK.
4 Buchfink, B., Xie, C. and Huson, D. H. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12:59-60.   DOI
5 Chaudhari, N. M., Gupta, V. K. and Dutta, C. 2016. PGA- an ultra-fast pan-genome analysis pipeline. Sci. Rep. 6:24373.   DOI
6 Edgar, R. C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460-2461.   DOI
7 Falkenstein, H., Bellemann, P., Walter, S., Zeller, W. and Geider, K. 1988. Identification of Erwinia amylovora, the fireblight pathogen, by colony hybridization with DNA from plasmid pEA29. Appl. Environ. Microbiol. 54:2798-2802.   DOI
8 Gross, M., Geier, G., Rudolph, K. and Geider, K. 1992. Levan and levansucrase synthesized by the fireblight pathogen Erwinia amylovora. Physiolol. Mol. Plant Pathol. 40:371-381.   DOI
9 Guglielmini, J. and Van Melderen, L. 2011. Bacterial toxin-antitoxin systems: translation inhibitors everywhere. Mob. Genet. Elements 1:283-306.   DOI
10 Han, K. S., Yu, J.-G., Lee, H.-B., Oh, C.-S., Yea, M. C., Lee, J.-H. and Park, D. H. 2016. Controlling by effective pruning of twigs showing black shoot blight disease symptoms in apple trees. Res. Plant Des. 22:269-275.   DOI
11 Hershberg, R., Altuvia, S. and Margalit, H. 2003. A survey of small RNA-encoding genes in Escherichia coli. Nucleic Acids Res. 31:1813-1820.   DOI
12 Hughes, D. 2000. Evaluating genome dynamics: the constraints on rearrangements within bacterial genomes. Genome Biol. 1:reviews0006.1.   DOI
13 Kim, W. S., Gardan, L., Rhim, S. L. and Geider, K. 1999. Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai). Int. J. Syst. Bacteriol. 49:899-905.   DOI
14 Majdalani, N., Chen, S., Murrow, J., St John, K. and Gottesman, S. 2001. Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol. Microbiol. 39:1382-1394.   DOI
15 Kim, W. S., Hildebrand, M., Jock, S. and Geider, K. 2001. Molecular comparison of pathogenic bacteria from pear trees in Japan and the fire blight pathogen Erwinia amylovora. Microbiology 147:2951-2959.   DOI
16 Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J. and Marra, M. A. 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19:1639-1645.   DOI
17 Kube, M., Migdoll, A. M., Gehring, I., Heitmann, K., Mayer, Y., Kuhl, H., Knaust, F., Geider, K. and Reinhardt, R. 2010. Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genomics 11:393.   DOI
18 Lee, G. M., Oh, E.-J., Ko, S., Park, J., Park, D. H., Kim, D. and Oh, C.-S. 2018. Draft genome sequence of a bacterial plant pathogen Erwinia pyrifoliae strain EpK1/15 isolated from an apple twig showing black shoot blight. Korean J. Microbiol. 54:69-70.   DOI
19 Li, W.-H., Gojobori, T. and Nei, M. 1981. Pseudogenes as a paradigm of neutral evolution. Nature 292:237-239.   DOI
20 Mann, R. A., Smits, T. H., Bühlmann, A., Blom, J., Goesmann, A., Frey, J. E., Plummer, K. M., Beer, S. V., Luck, J., Duffy, B. and Rodoni, B. 2013. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core. PLoS ONE 8:e55644.   DOI
21 Maxson-Stein, K., McGhee, G. C., Smith, J. J., Jones, A. L. and Sundin, G. W. 2003. Genetic analysis of a pathogenic Erwinia sp. isolated from pear in Japan. Phytopathology 93:1393-1399.   DOI
22 Petnicki-Ocwieja, T., van Dijk, K. and Alfano, J. R. 2005. The hrpK operon of Pseudomonas syringae pv. tomato DC3000 encodes two proteins secreted by the type III (Hrp) protein secretion system: HopB1 and HrpK, a putative type III translocator. J. Bacteriol. 187:649-663.   DOI
23 McClelland, M., Sanderson, K. E., Spieth, J., Clifton, S. W., Latreille, P., Courtney, L., Porwollik, S., Ali, J., Dante, M., Du, F., Hou, S., Layman, D., Leonard, S., Nguyen, C., Scott, K., Holmes, A., Grewal, N., Mulvaney, E., Ryan, E., Sun, H., Florea, L., Miller, W., Stoneking, T., Nhan, M., Waterston, R. and Wilson, R. K. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852-856.   DOI
24 Merrikh, C. N. and Merrikh, H. 2018. Gene inversion potentiates bacterial evolvability and virulence. Nat. Commun. 9:4662.   DOI
25 Nawrocki, E. P., Burge, S. W., Bateman, A., Daub, J., Eberhardt, R. Y., Eddy, S. R., Floden, E. W., Gardner, P. P., Jones, T. A., Tate, J. and Finn, R. D. 2015. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43:D130-D137.   DOI
26 Oh, C.-S., Kim, J. F. and Beer, S. V. 2005. The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infectiondouble dagger. Mol. Plant Pathol. 6:125-138.   DOI
27 Park, D. H., Thapa, S. P., Choi, B.-S., Kim, W.-S., Hur, J. H., Cho, J. M., Lim, J.-S., Choi, I.-Y. and Lim, C. K. 2011. Complete genome sequence of Japanese Erwinia strain Ejp617, a bacterial shoot blight pathogen of pear. J. Bacteriol. 193:586-587.   DOI
28 Podlaha, O. and Zhang, J. 2010. Pseudogenes and their evolution. In: Encyclopedia of life sciences (ELS), pp. 1-8. John Wiley & Sons, Ltd., Chichester, UK.
29 Smits, T. H., Jaenicke, S., Rezzonico, F., Kamber, T., Goesmann, A., Frey, J. E. and Duffy, B. 2010. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity. BMC Genomics 11:2.   DOI
30 Sonnhammer, E. L. and Ostlund, G. 2015. InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res. 43:D234-D239.   DOI
31 Tampakaki, A. P., Skandalis, N., Gazi, A. D., Bastaki, M. N., Sarris, P. F., Charova, S. N., Kokkinidis, M. and Panopoulos, N. J. 2010. Playing the "Harp": evolution of our understanding of hrp/hrc genes. Annu. Rev. Phytopathol. 48:347-370.   DOI
32 Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., Krylov, D. M., Mazumder, R., Mekhedov, S. L., Nikolskaya, A. N., Rao, B. S., Smirnov, S., Sverdlov, A. V., Vasudevan, S., Wolf, Y. I., Yin, J. J. and Natale, D. A. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41.   DOI
33 Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., Lomsadze, A., Pruitt, K. D., Borodovsky, M. and Ostell, J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44:6614-6624.   DOI
34 Werren, J. H. 2011. Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc. Natl. Acad. Sci. U. S. A. 108(Suppl 2):10863-10870.   DOI
35 Yoon, S.-H., Ha, S.-M., Lim, J., Kwon, S. and Chun, J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281-1286.   DOI
36 Zhao, Y. and Qi, M. 2011. Comparative genomics of Erwinia amylovora and related Erwinia species: what do we learn? Genes (Basel) 2:627-639.   DOI
37 Zhou, D., Han, Y., Qiu, J., Qin, L., Guo, Z., Wang, X., Song, Y., Tan, Y., Du, Z. and Yang, R. 2006. Genome-wide transcriptional response of Yersinia pestis to stressful conditions simulating phagolysosomal environments. Microbes. Infect. 8:2669-2678.   DOI