DOI QR코드

DOI QR Code

Genome Wide Analysis of the Potato Soft Rot Pathogen Pectobacterium carotovorum Strain ICMP 5702 to Predict Novel Insights into Its Genetic Features

  • Mallick, Tista (Department of Biotechnology, Rama Devi Women's University) ;
  • Mishra, Rukmini (School of Applied Sciences, Centurion University of Technology and Management) ;
  • Mohanty, Sasmita (Department of Biotechnology, Rama Devi Women's University) ;
  • Joshi, Raj Kumar (Department of Biotechnology, Rama Devi Women's University)
  • Received : 2021.12.28
  • Accepted : 2022.02.07
  • Published : 2022.04.01

Abstract

Pectobacterium carotovorum subsp. carotovorum (Pcc) is a gram-negative, broad host range bacterial pathogen which causes soft rot disease in potatoes as well as other vegetables worldwide. While Pectobacterium infection relies on the production of major cell wall degrading enzymes, other virulence factors and the mechanism of genetic adaptation of this pathogen is not yet clear. In the present study, we have performed an in-depth genome-wide characterization of Pcc strain ICMP5702 isolated from potato and compared it with other pathogenic bacteria from the Pectobacterium genus to identify key virulent determinants. The draft genome of Pcc ICMP5702 contains 4,774,457 bp with a G + C content of 51.90% and 4,520 open reading frames. Genome annotation revealed prominent genes encoding key virulence factors such as plant cell wall degrading enzymes, flagella-based motility, phage proteins, cell membrane structures, and secretion systems. Whereas, a majority of determinants were conserved among the Pectobacterium strains, few notable genes encoding AvrE-family type III secretion system effectors, pectate lyase and metalloprotease in addition to the CRISPR-Cas based adaptive immune system were uniquely represented. Overall, the information generated through this study will contribute to decipher the mechanism of infection and adaptive immunity in Pcc.

Keywords

Acknowledgement

The authors are thankful to Vice Chancellor, Rama Devi Women's University for her guidance and support. Dr Joshi's lab is supported by research grants from the Dept. of Biotechnology (BT/PR23412/BPA/118/284/2017), Govt of India and Science and Engineering Research Board (SERB) (EMR/2016/005234), Dept. of Science & Technology (DST), Govt of India.

References

  1. Alcock, B. P., Raphenya, A. R., Lau, T., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A. V., Cheng, A. A., Liu, S., Min, S. Y., Miroshnichenko, A., Tran, H. K., Werfalli, R. E., Nasir, J. A., Oloni, M., Speicher, D. J., Florescu, A., Singh, B., Faltyn, M., Hernandez-Koutoucheva, A., Sharma, A. N., Bordeleau, E., Pawlowski, A. C., Zubyk, H. L., Dooley, D., Griffiths, E., Maguire, F., Winsor, G. L., Beiko, R. G., Brinkman, F. S. L., Hsiao, W. W. L., Domselaar, G. V. and McArthur, A. G. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48:D517-D525.
  2. Almagro Armenteros, J. J., Tsirigos, K. D., Sonderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G. and Nielsen, H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37:420-423. https://doi.org/10.1038/s41587-019-0036-z
  3. Arndt, D., Grant, J. R., Marcu, A., Sajed, T., Pon, A., Liang, Y. and Wishart, D. S. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44:W16-W21. https://doi.org/10.1093/nar/gkw387
  4. Auch, A. F., Klenk, H.-P. and Goker, M. 2010. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand. Genomic Sci. 2:142-148. https://doi.org/10.4056/sigs.541628
  5. Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G. D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A. and Zagnitko, O. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75
  6. Benson, G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27:573-580. https://doi.org/10.1093/nar/27.2.573
  7. Carattoli, A., Zankari, E., Garcia-Fernandez, A., Voldby Larsen, M., Lund, O., Villa, L., Moller Aarestrup, F. and Hasman, H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58:3895-3903. https://doi.org/10.1128/AAC.02412-14
  8. Charkowski, A. O. 2018. The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol. 56:269-288. https://doi.org/10.1146/annurev-phyto-080417-045906
  9. Coburn, B., Sekirov, I. and Finlay, B. B. 2007. Type III secretion systems and disease. Clin. Microbiol. Rev. 20:535-549. https://doi.org/10.1128/CMR.00013-07
  10. Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Neron, B., Rocha, E. P. C., Vergnaud, G., Gautheret, D. and Pourcel, C. 2018. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46:W246-W251. https://doi.org/10.1093/nar/gky425
  11. Crepin, A., Barbey, C., Beury-Cirou, A., Helias, V., Taupin, L., Reverchon, S., Nasser, W., Faure, D., Dufour, A., Orange, N., Feuilloley, M., Heurlier, K., Burini, J.-F. and Latour, X. 2012. Quorum sensing signaling molecules produced by reference and emerging soft-rot bacteria (Dickeya and Pectobacterium spp.). PLoS ONE 7:e35176. https://doi.org/10.1371/journal.pone.0035176
  12. Darling, A. C. E., Mau, B., Blattner, F. R. and Perna, N. T. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14:1394-1403. https://doi.org/10.1101/gr.2289704
  13. Davidsson, P. R., Kariola, T., Niemi, O. and Palva, E. T. 2013. Pathogenicity of and plant immunity to soft rot pectobacteria. Front. Plant Sci. 4:191. https://doi.org/10.3389/fpls.2013.00191
  14. Dees, M. W., Lysoe, E., Rossmann, S., Perminow, J. and Brurberg, M. B. 2017. Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 67:5222-5229. https://doi.org/10.1099/ijsem.0.002448
  15. Filloux, A. 2004. The underlying mechanisms of type II protein secretion. Biochim. Biophys. Acta 1694:163-179. https://doi.org/10.1016/j.bbamcr.2004.05.003
  16. Gallique, M., Decoin, V., Barbey, C., Rosay, T., Feuilloley, M. G. J., Orange, N. and Merieau, A. 2017. Contribution of the Pseudomonas fluorescens MFE01 type VI secretion system to biofilm formation. PLoS ONE 12:e0170770. https://doi.org/10.1371/journal.pone.0170770
  17. Garg, A. and Gupta, D. 2008. VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics 9:62. https://doi.org/10.1186/1471-2105-9-62
  18. Hogan, C. S., Mole, B. M., Grant, S. R., Willis, D. K. and Charkowski, A. O. 2013. The type III secreted effector DspE is required early in Solanum tuberosum leaf infection by Pectobacterium carotovorum to cause cell death, and requires Wx(3-6)D/E motifs. PLoS ONE 8:e65534. https://doi.org/10.1371/journal.pone.0065534
  19. Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernandez-Plaza, A., Forslund, S. K., Cook, H., Mende, D. R., Letunic, I., Rattei, T., Jensen, L. J., von Mering, C. and Bork, P. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47:D309-D314. https://doi.org/10.1093/nar/gky1085
  20. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32:D277-D280. https://doi.org/10.1093/nar/gkh063
  21. Kim, H.-S., Ma, B., Perna, N. T. and Charkowski, A. O. 2009. Phylogeny and virulence of naturally occurring type III secretion system-deficient Pectobacterium strains. Appl. Environ. Microbiol. 75:4593-4549.
  22. Kim, H.-S., Thammarat, P., Lommel, S. A., Hogan, C. S. and Charkowski, A. O. 2011. Pectobacterium carotovorum elicits plant cell death with DspE/F but the P. carotovorum DspE does not suppress callose or induce expression of plant genes early in plant-microbe interactions. Mol. Plant-Microbe Interact. 24:773-786. https://doi.org/10.1094/MPMI-06-10-0143
  23. Koiv, V., Andresen, L., Broberg, M., Frolova, J., Somervuo, P., Auvinen, P., Pirhonen, M., Tenson, T. and Mae, A. 2013. Lack of RsmA-mediated control results in constant hypervirulence, cell elongation, and hyperflagellation in Pectobacterium wasabiae. PLoS ONE 8:e54248. https://doi.org/10.1371/journal.pone.0054248
  24. Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305:567-580. https://doi.org/10.1006/jmbi.2000.4315
  25. Lee, D. H., Lim, J.-A., Lee, J., Roh, E., Jung, K., Choi, M., Oh, C., Ryu, S., Yun, J. and Heu, S. 2013. Characterization of genes required for the pathogenicity of Pectobacterium carotovorum subsp. carotovorum Pcc21 in Chinese cabbage. Microbiology 159:1487-1496. https://doi.org/10.1099/mic.0.067280-0
  26. Li, L., Yuan, L., Shi, Y., Xie, X., Chai, A., Wang, Q. and Li, B. 2019. Comparative genomic analysis of Pectobacterium carotovorum subsp. brasiliense SX309 provides novel insights into its genetic and phenotypic features. BMC Genomics 20:486. https://doi.org/10.1186/s12864-019-5831-x
  27. Li, X., Ma, Y., Liang, S., Tian, Y., Yin, S., Xie, S. and Xie, H. 2018. Comparative genomics of 84 Pectobacterium genomes reveals the variations related to a pathogenic lifestyle. BMC Genomics 19:889. https://doi.org/10.1186/s12864-018-5269-6
  28. Mashavha, M. L. 2013. Characterisation of Pectobacterium carotovorum subsp. brasiliense isolates causing blackleg and soft rot diseases of potato in South Africa. M.S. thesis. University of Pretoria, Pretoria, South Africa.
  29. Mole, B., Habibi, S., Dangl, J. L. and Grant, S. R. 2010. Gluconate metabolism is required for virulence of the soft-rot pathogen Pectobacterium carotovorum. Mol. Plant-Microbe Interact. 23:1335-1344. https://doi.org/10.1094/mpmi-03-10-0067
  30. Nivaskumar, M. and Francetic, O. 2014. Type II secretion system: a magic beanstalk or a protein escalator. Biochim. Biophys. Acta 1843:1568-1577. https://doi.org/10.1016/j.bbamcr.2013.12.020
  31. Nykyri, J., Niemi, O., Koskinen, P., Nokso-Koivisto, J., Pasanen, M., Broberg, M., Plyusnin, I., Toronen, P., Holm, L., Pirhonen, M. and Palva, E. T. 2012. Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog. 8:e1003013. https://doi.org/10.1371/journal.ppat.1003013
  32. Oh, C.-S. and Beer, S. V. 2005. Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol. Lett. 253:185-192. https://doi.org/10.1016/j.femsle.2005.09.051
  33. Panda, P., Lu, A., Armstrong, K. F. and Pitman, A. R. 2015. Draft genome sequence for ICMP 5702, the type strain of Pectobacterium carotovorum subsp. carotovorum that causes soft rot disease on potato. Genome Announc. 3:e00875-15.
  34. Petrova, O., Gorshkov, V., Sergeeva, I., Daminova, A., Ageeva, M. and Gogolev, Y. 2016. Alternative scenarios of starvationinduced adaptation in Pectobacterium atrosepticum. Res. Microbiol. 167:254-261. https://doi.org/10.1016/j.resmic.2016.01.009
  35. Portier, P., Pedron, J., Taghouti, G., Fischer-Le Saux, M., Caullireau, E., Bertrand, C., Laurent, A., Chawki, K., Oulgazi, S., Moumni, M., Andrivon, D., Dutrieux, C., Faure, D., Helias, V. and Barny, M.-A. 2019. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 69:3207-3216. https://doi.org/10.1099/ijsem.0.003611
  36. Rodriguez, R, L. M. and Konstantinidis, K. T. 2016. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 4:e1900v1.
  37. Salzberg, S. L. 2019. Next-generation genome annotation: we still struggle to get it right. Genome Biol. 20:92. https://doi.org/10.1186/s13059-019-1715-2
  38. Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  39. Toronen, P., Medlar, A. and Holm, L. 2018. PANNZER2: a rapid functional annotation web server. Nucleic Acids Res. 46:W84-W88. https://doi.org/10.1093/nar/gky350
  40. Toth, I. K., Bell, K. S., Holeva, M. C. and Birch, P. R. J. 2003. Soft rot erwiniae: from genes to genomes. Mol. Plant Pathol. 4:17-30. https://doi.org/10.1046/j.1364-3703.2003.00149.x
  41. Vercoe, R. B., Chang, J. T., Dy, R. L., Taylor, C., Gristwood, T., Clulow, J. S., Richter, C., Przybilski, R., Pitman, A. R. and Fineran, P. C. 2013. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 9:e1003454. https://doi.org/10.1371/journal.pgen.1003454
  42. Waleron, M., Misztak, A., Waleron, M., Franczuk, M., Wielgomas, B. and Waleron, K. 2018. Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov. Syst. Appl. Microbiol. 41:85-93. https://doi.org/10.1016/j.syapm.2017.11.005
  43. Wang, J., Li, J., Hou, Y., Dai, W., Xie, R., Marquez-Lago, T. T., Leier, A., Zhou, T., Torres, V., Hay, I., Stubenrauch, C., Zhang, Y., Song, J. and Lithgow, T. 2021. BastionHub: a universal platform for integrating and analyzing substrates secreted by Gram-negative bacteria. Nucleic Acids Res. 49:D651-D659. https://doi.org/10.1093/nar/gkaa899
  44. Wang, Y., Coleman-Derr, D., Chen, G. and Gu, Y. Q. 2015. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 43:W78-W84. https://doi.org/10.1093/nar/gkv487
  45. Wick, R. R., Judd, L. M., Gorrie, C. L. and Holt, K. E. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595
  46. Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P. K., Xu, Y. and Yin, Y. 2018. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46:W95-W101. https://doi.org/10.1093/nar/gky418