• 제목/요약/키워드: Type 316L Stainless steel

검색결과 33건 처리시간 0.024초

Type 316LN 스테인리스강의 절삭특성과 가공 변질층 (Cutting Characteristics and Deformed Layer of Type 316LN Stainless Steel)

  • 오선세;이원
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.196-205
    • /
    • 2004
  • The cutting characteristics and the deformed layer of nitrogen(N)-added type 316LN stainless steel were comparatively investigated to type 316L stainless steel. The cutting force, the surface roughness(Ra) and the tool wear in face milling works were measured with cutting conditions, and the deformed layers were obtained from micro-hardness testing method. The cutting resistance of type 316LN was similar to type 316L in spite of its high strength. The surface roughness of type 316LN was superior to type 316L for all the cutting conditions. In particular, in the high cutting speed above 345m/min, the surface roughness of the two stainless steels was closely same. The deformed layer thickness of the two stainless steels was generated in the 150$\mu\textrm{m}$-300$\mu\textrm{m}$ ranges, and its value of type 316LN was lower than that of type 316L. This is due to the high strength properties by nitrogen effect. It was found that type 316LN was higher in the tool wear than that type 316L, and flank wear was dominant to crater wear. In face milling works of type 316LN steel, tool wear is regarded as a important problem.

Type 316L 스테인리스강의 700℃ 열교환기에의 적용 방법론 (Application methodology of Type 316L stainless steel to a 700℃ heat exchanger)

  • 이형연;남기언;이윤승;어재혁
    • 한국압력기기공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.75-83
    • /
    • 2024
  • In this study, high temperature design and integrity evaluation methodology have been developed for Type 316L stainless steel air-to-sodium heat exchanger which uses 700℃ sodium as coolant. Currently the only design rules that take creep effects into consideration explicitly for the 316L stainless steel subjected to high temperature in the creep range are French RCC-MRx, where elevated temperature designs are possible around 550℃. Absent design coefficients at high temperature were determined based on the material properties newly determined in previous studies, and high-temperature design evaluation methodologies were developed based on 3D finite element analyses on the 700℃ class heat exchanger. In addition, works were conducted on the web-based design evaluation program of HITEP_RCC-MRx including incorporation of material properties and design coefficients up to 700℃. Methodologies on high temperature design evaluations on Type 316L stainless steel high-temperature heat exchanger were suggested.

용융탄산염 연료전지의 Anode가스 분위기에서 AISI-type 316L stainless steel의 전기화학적 부식 특성 (Electrochemical Corrosion Characteristics of AISI-type 316 L Stainless Steel in Anode-Gas Environment of MCFC)

  • 이갑수;임태훈;홍성안;김화용
    • 전기화학회지
    • /
    • 제5권2호
    • /
    • pp.62-67
    • /
    • 2002
  • 용융탄산염 연료전지의 성능 저하와 수명 감소의 원인이 되는 부식 현상을 규명하고자 분리판 재료로 가장 널리 사용되고 있는 AISI-type 316L stainless steel을 대상으로 62Li/38K계 용융탄산염 내에서의 부식 실험을 수행하였다. 부식의 형태 및 속도는 환경에 의하여 다양하게 변화하게 되며, 용융탄산염 내에서 AISI-type 316L stainless steel의 부식 속도는 부식 반응에 의하여 형성되는 부동태 산화막의 안정성에 의하여 크게 영향을 받는다. 전기화학적 분극 거동을 분석한 결과 용융탄산염 연료전지의 anode가슨 분위기에서는 안정한 부동태 산화막이 형성되지 않았다. 순환 전압전류법과 정전위법을 이용한 부식 생성물의 X-ray분석을 통하여 특정한 전기화학적 전위 영역에서 반응기구와의 인과관계를 규명하고 다양한 형태의 부식 반응들을 분리해 내었다.

Design of type 316L stainless steel 700 ℃ high-temperature piping

  • Hyeong-Yeon Lee;Hyeonil Kim;Jaehyuk Eoh
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3581-3590
    • /
    • 2023
  • High-temperature design evaluations were conducted on Type 316L stainless steel piping for a 700 ℃ large-capacity thermal energy storage verification test loop (TESET) under construction at KAERI. The hot leg piping with sodium coolant at 700 ℃ connects the main components of the loop heater, hot storage tank, and air-to-sodium heat exchanger. Currently, the design rules of ASME B31.1 and RCC-MRx provide design procedures for high-temperature piping in the creep range for Type 316L stainless steel. However, the design material properties around 700 ℃ are not available in those rules. Therefore, a number of material tests, including creep tests at various temperatures, were conducted to determine the insufficient material properties and relevant design coefficients so that high-temperature design on the 700 ℃ piping may be possible. It was shown that Type 316L stainless steel can be used in a 700 ℃ high-temperature piping system of Generation IV reactor systems or a renewable energy systems, such as thermal energy storage systems, for a limited operation time.

음극 인가전위 하에서 type 2205과 type 316L의 수소취성 저항성 (Comparison of hydrogen embrittlement resistance between 2205 duplex stainless steels and type 316L austenitic stainless steels under the cathodic applied potential)

  • 서동일;이재봉
    • Corrosion Science and Technology
    • /
    • 제15권5호
    • /
    • pp.237-244
    • /
    • 2016
  • 2205 duplex stainless steels have been used for the construction of the marine environment, because of their excellent corrosion resistance and high strength. However, the resistance to hydrogen embrittlement (HE) may be less than that of 316L austenitic stainless steel. The reason why 316L stainless steels have better resistance to HE is associated with crystal structure (FCC, face centered cubic) and the higher stacking faults energy than 2205 duplex stainless steels. Furthermore 2205 stainless steels with or without tungsten were also examined in terms of HE. 2205 stainless steels containing tungsten is less resistible to HE. It is because dislocation tangle was formed in 2205 duplex stainless steels. Slow strain-rate tensile test (SSRT) was conducted to measure the resistance to HE under the cathodic applied potential. Hydrogen embrittlement index (HEI) was used to evaluate HE resistance through the quantitative calculation.

Type 316L 스테인리스강의 고온 기계적 거동 (High-Temperature Mechanical Behaviors of Type 316L Stainless Steel)

  • 김우곤;이형연
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.92-99
    • /
    • 2020
  • High-temperature mechanical behaviors of Type 316L stainless steel (SS), which is considered as one of the major structural materials of Generation-IV nuclear reactors, were investigated through the tension and creep tests at elevated temperatures. The tension tests were performed under the strain rate of 6.67×10-4 (1/s) from room temperature to 650℃, and the creep tests were conducted under different applied stresses at 550℃, 600℃, 650℃, and 700℃. The tensile behavior was investigated, and the modeling equations for tensile strengths and elongation were proposed as a function of temperature. The creep behavior was analyzed in terms of various creep equations: Norton's power law, modified Monkman-Grant relation, damage tolerance factor(λ), and Z-parameter, and the creep constants were proposed. In addition, the tested tensile and creep strengths were compared with those of RCC-MRx. Results showed that creep exponent value decreased from n=13.55 to n=7.58 with increasing temperature, λ = 6.3, and Z-parameter obeyed well a power-law form of Z=5.79E52(σ/E)9.12. RCC-MRx showed lower creep strength and marginally different in creep strain rate, compared to the tested results. Same creep deformation was operative for dislocation movement regardless of the temperatures.

오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(I) - 시판 오스테나이트계 스테인리스강의 용접성 - (A Study of Metallurgical Phenomena in Austenitic Stainless Steel Fusion Welds (I) -Weldability of Commercial Austenitic Stainless Steels-)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • 제16권3호
    • /
    • pp.111-120
    • /
    • 1998
  • To predict and evaluate metallurgical and mechanical behavior of th welds, it is essential to understand solidification behavior and microstructural evolution experienced in the welds, neither of which follows the equilibrium phase diagram because of rapid heating and cooling conditions. Metallurgical phenomena in austenitic stainless steel fusion welds, types 304, 309S, 316L, 321 and 304N, were investigated in this study. Autogenous GTA welding was performed on weld coupons, and primary solidification mode and phase distribution were investigated from the welds. Varestraint test was employed to evaluate solidification cracking susceptibilities of the alloys. GTA weld fusion zones in type 304, 321 and 304N stainless steels experienced primary ferrite solidification while those in type 309S primary austenite solidification. Type 316L exhibited a mixed type of primary ferrite and primary austenite solidification. The primary solidification mode strongly depended on $Cr_{eq}/Ni_{eq}$ ratio. In terms of solidification cracking susceptibility, type 309S that solidified as primary austenite exhibited high cracking susceptibility while the alloys experienced primary ferrite solidification showed low cracking susceptibility. The relative ranking in solidification cracking susceptibility was type 304=type 304N < type 321 < type 316L < type 309S.

  • PDF

Mechanical performance of additively manufactured austenitic 316L stainless steel

  • Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.244-254
    • /
    • 2022
  • For tensile tests, Vickers hardness tests and microstructure tests, plate-type and box-type specimens of austenitic 316L stainless steels were produced by a conventional machining (CM) process as well as two additive manufacturing processes such as direct metal laser sintering (DMLS) and direct metal tooling (DMT). The specimens were irradiated up to a fast neutron fluence of 3.3 × 109 n/cm2 at a neutron irradiation facility. Mechanical performance of the unirradiated and irradiated specimens were investigated at room temperature and 300 ℃, respectively. The tensile strengths of the DMLS, DMT and CM 316L specimens are in descending order but the elongations are in reverse order, regardless of irradiation and temperature. The ratio of Vickers hardness to ultimate tensile strength was derived to be between 3.21 and 4.01. The additive manufacturing processes exhibit suitable mechanical performance, comparing the tensile strengths and elongations of the conventional machining process.

AISI 316L스테인리스강의 소형펀치 크리프 거동에 미치는 마찰계수의 영향 (Effect of Friction Coefficient on the Small Punch Creep Behavior of AISI 316L Stainless Steel)

  • 김범준;조남혁;김문기;임병수
    • 대한금속재료학회지
    • /
    • 제49권7호
    • /
    • pp.515-521
    • /
    • 2011
  • Small punch creep testing has received attention due to the convenience of using smaller specimens than those of conventional uniaxial creep tests, which enables creep testing on developing or currently operational components. However, precedent studies have shown that it is necessary to consider friction between the punch and specimen when computing uniaxial equivalent stress from a finite element model. In this study, small punch creep behaviors of AISI 316L stainless steel, which is widely used in high temperature-high pressure machineries, have been compared for the two different ceramic balls such as $Si_3N_4$ and $Al_2O_3$. The optimal range of the friction coefficient is 0.4~0.5 at $650^{\circ}C$ for the best fit between experimental and simulation data of AISI 316 L stainless steel. The higher the friction coefficient, the longer the creep rupture time is. Therefore, the type of ceramic ball used must be specified for standardization of small punch creep testing.