Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.7.515

Effect of Friction Coefficient on the Small Punch Creep Behavior of AISI 316L Stainless Steel  

Kim, Bum-Joon (School of Mechanical Engineering, Dongyang Mirae University)
Cho, Nam-Hyuck (School of Mechanical Engineering, Sungkyunkwan University)
Kim, Moon-K (School of Mechanical Engineering, Sungkyunkwan University)
Lim, Byeong-Soo (School of Mechanical Engineering, Sungkyunkwan University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.7, 2011 , pp. 515-521 More about this Journal
Abstract
Small punch creep testing has received attention due to the convenience of using smaller specimens than those of conventional uniaxial creep tests, which enables creep testing on developing or currently operational components. However, precedent studies have shown that it is necessary to consider friction between the punch and specimen when computing uniaxial equivalent stress from a finite element model. In this study, small punch creep behaviors of AISI 316L stainless steel, which is widely used in high temperature-high pressure machineries, have been compared for the two different ceramic balls such as $Si_3N_4$ and $Al_2O_3$. The optimal range of the friction coefficient is 0.4~0.5 at $650^{\circ}C$ for the best fit between experimental and simulation data of AISI 316 L stainless steel. The higher the friction coefficient, the longer the creep rupture time is. Therefore, the type of ceramic ball used must be specified for standardization of small punch creep testing.
Keywords
small punch creep; multi-axial stress state; creep; AISI 316L stainless steel; friction coefficient; finite element analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. S. Cheon, Trans. KSME A 24, 1753 (2000).
2 K. B. Yoon et.al, Trans. KSME A. 25, 1493 (2001).
3 R. Hurst, V. Bicego, and J. Foulds, Proceedings of CREEP8, p.1, San Antonio, Texas (2007).
4 B. J. Kim, M. K. Kim, H. T. Dung, and B. S. Lim, Kor. J. Met. Mater. 48, 19 (2010).   DOI   ScienceOn
5 B. J. Kim and B. S. Lim, Acta. Mech. Sol. Sin. 21, 312 (2008).   DOI
6 B. J. Kim, B. S. Lim, and D. H. Ki, IJMPB. 20, 4231 (2006).   DOI   ScienceOn
7 P. Dymacek and K. Milicka, Mat. Sci. Eng A 510, 444 (2009).
8 J. W. Im, B. J. Kim, M. K. Kim, and B. S. Lim, Kor. J. Met. Mater. 48, 965 (2010).   DOI   ScienceOn
9 T. Kato, S. Komazaki, Y. Kohno, H. Tanigawa, and A. Kohyama, J. Nucl. Mater. 386, 520 (2009).
10 S. Komazaki, T. Kato, Y. Kohno, and H. Tanigawa, Mat. Sci. Eng A. 510, 229 (2009).
11 F. Dobes, K. Milicka, and P. Kratochvil, Intermetallics 12, 1397 (2004).   DOI   ScienceOn
12 T. Izaki, T. Kobayashi, J. Kusumoto, and A. Kanaya, Int. J. Pres. Ves. & Piping. 86, 637 (2009).   DOI   ScienceOn
13 Maribel L. Saucedo-Munoz, S. Komazaki, T. Takahashi, T. Hashida, and T. Shoji, J. Mater. Res 17, 1945 (2002).   DOI   ScienceOn