DOI QR코드

DOI QR Code

AISI 316L스테인리스강의 소형펀치 크리프 거동에 미치는 마찰계수의 영향

Effect of Friction Coefficient on the Small Punch Creep Behavior of AISI 316L Stainless Steel

  • 김범준 (동양미래대학 기계공학부) ;
  • 조남혁 (성균관대학교 기계공학부) ;
  • 김문기 (성균관대학교 기계공학부) ;
  • 임병수 (성균관대학교 기계공학부)
  • Kim, Bum-Joon (School of Mechanical Engineering, Dongyang Mirae University) ;
  • Cho, Nam-Hyuck (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Kim, Moon-K (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Lim, Byeong-Soo (School of Mechanical Engineering, Sungkyunkwan University)
  • 투고 : 2010.12.29
  • 발행 : 2011.07.25

초록

Small punch creep testing has received attention due to the convenience of using smaller specimens than those of conventional uniaxial creep tests, which enables creep testing on developing or currently operational components. However, precedent studies have shown that it is necessary to consider friction between the punch and specimen when computing uniaxial equivalent stress from a finite element model. In this study, small punch creep behaviors of AISI 316L stainless steel, which is widely used in high temperature-high pressure machineries, have been compared for the two different ceramic balls such as $Si_3N_4$ and $Al_2O_3$. The optimal range of the friction coefficient is 0.4~0.5 at $650^{\circ}C$ for the best fit between experimental and simulation data of AISI 316 L stainless steel. The higher the friction coefficient, the longer the creep rupture time is. Therefore, the type of ceramic ball used must be specified for standardization of small punch creep testing.

키워드

과제정보

연구 과제 주관 기관 : 한국에너지 기술평가원(KETEP)

참고문헌

  1. J. S. Cheon, Trans. KSME A 24, 1753 (2000).
  2. K. B. Yoon et.al, Trans. KSME A. 25, 1493 (2001).
  3. R. Hurst, V. Bicego, and J. Foulds, Proceedings of CREEP8, p.1, San Antonio, Texas (2007).
  4. B. J. Kim, M. K. Kim, H. T. Dung, and B. S. Lim, Kor. J. Met. Mater. 48, 19 (2010). https://doi.org/10.3365/KJMM.2010.48.01.019
  5. B. J. Kim and B. S. Lim, Acta. Mech. Sol. Sin. 21, 312 (2008). https://doi.org/10.1007/s10338-008-0836-z
  6. B. J. Kim, B. S. Lim, and D. H. Ki, IJMPB. 20, 4231 (2006). https://doi.org/10.1142/S0217979206041148
  7. P. Dymacek and K. Milicka, Mat. Sci. Eng A 510, 444 (2009).
  8. J. W. Im, B. J. Kim, M. K. Kim, and B. S. Lim, Kor. J. Met. Mater. 48, 965 (2010). https://doi.org/10.3365/KJMM.2010.48.11.965
  9. T. Kato, S. Komazaki, Y. Kohno, H. Tanigawa, and A. Kohyama, J. Nucl. Mater. 386, 520 (2009).
  10. S. Komazaki, T. Kato, Y. Kohno, and H. Tanigawa, Mat. Sci. Eng A. 510, 229 (2009).
  11. F. Dobes, K. Milicka, and P. Kratochvil, Intermetallics 12, 1397 (2004). https://doi.org/10.1016/j.intermet.2004.04.043
  12. T. Izaki, T. Kobayashi, J. Kusumoto, and A. Kanaya, Int. J. Pres. Ves. & Piping. 86, 637 (2009). https://doi.org/10.1016/j.ijpvp.2009.04.005
  13. Maribel L. Saucedo-Munoz, S. Komazaki, T. Takahashi, T. Hashida, and T. Shoji, J. Mater. Res 17, 1945 (2002). https://doi.org/10.1557/JMR.2002.0288