• Title/Summary/Keyword: Two-tail Approximation

Search Result 7, Processing Time 0.027 seconds

A Study on Sigma Level and Its Calculation (시그마 수준과 계산 방법에 대한 고찰)

  • 박준오;박성현
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.2
    • /
    • pp.194-204
    • /
    • 2003
  • It is very important to understand and interpret the meaning of the sigma level correctly through the Six Sigma project. Especially, the confusion over the relation between sigma level from the short-term point of view and defective proportion or DPMO from the long-term point of view may make a big gap between expected results of the Six Sigma project and real results in the field. The one-tail approximation is commonly used to calculate the sigma level both in most literatures introducing Six Sigma and actual cases of the Six Sigma project. Since the one-tail approximation undervalues the sigma level of the fields such as business and service of which the sigma level is generally low, however. there can be misleading results of the explanation of the sigma level and inappropriate project evaluation. This paper describes the relation between sigma level and defective proportion in detail and clears the difference between the one-tail and two-tail approximation.

Tail Probability Approximations for the Ratio of two Independent Sequences of Random Variables

  • Cho, Dae-Hyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.415-428
    • /
    • 1999
  • In this paper, we study the saddlepoint approximations for the ratio of two independent sequences of random variables. In Section 2, we review the saddlepoint approximation to the probability density function. In section 3, we derive an saddlepoint approximation formular for the tail probability by following Daniels'(1987) method. In Section 4, we represent a numerical example which shows that the errors are small even for small sample size.

  • PDF

Tail Probability Approximations for the Ratio of the Independent Random Variables

  • Cho, Dae-Hyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.189-201
    • /
    • 1996
  • In this paper, we study the saddlepoint approximations for the ratio of independent random variables. In Section 2, we derive the saddlepoint approximation to the density. And in Section 3, we derive two approximation formulae for the tail probability, one by following Daniels'(1987) method and the other by following Lugannani and Rice's (1980). In Section 4, we represent some numerical examples which show that the errors are small even for small sample size.

  • PDF

Structural reliability estimation using Monte Carlo simulation and Pearson's curves

  • Krakovski, Mikhail B.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.201-213
    • /
    • 1995
  • At present Level 2 and importance sampling methods are the main tools used to estimate reliability of structural systems. But sometimes application of these techniques to realistic problems involves certain difficulties. In order to overcome the difficulties it is suggested to use Monte Carlo simulation in combination with two other techniques-extreme value and tail entropy approximations; an appropriate Pearson's curve is fit to represent simulation results. On the basis of this approach an algorithm and computer program for structural reliability estimation are developed. A number of specially chosen numerical examples are considered with the aim of checking the accuracy of the approach and comparing it with the Level 2 and importance sampling methods. The field of application of the approach is revealed.

Dynamic Instability of Rocket-Propelled Flying Bodies

  • Sugiyama, Yoshihiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.1-5
    • /
    • 2003
  • This paper deals with dynamic instability of slender rocket-propelled flying bodies, such as launch vehicle and advances missiles subjected to aerodynamic loads and an end rocket thrust. A flying body is simplified into a uniform free-free beam subjected to an end follower thrust. Two types of aerodynamic loads are assumed in the stability analysis. Firstly, it is assumed that two concentrated aerodynamic loads act on the flying body at its nose and tail. Secondly, to take account of effect of unsteady flow due to motion of a flexible flying body, aerodynamic load is estimated by the slender body approximation. Extended Hamilton's principle is applied to the considered beam for deriving the equation of motion. Application of FEM yields standardeigen-value problem. Dynamic stability of the beam is determined by the sign of the real part of the complex eigen-values. If aerodynamic loads are concentrated loads that act on the flying body at its nose and tail, the flutter thrust decreases by about 10% in comparison with the flutter thrust of free-free beam subjected only to an end follower thrust. If aerodynamic loads are distributed along the longitudinal axis of the flying body, the flutter thrust decreases by about 70% in comparison with the flutter thrust of free-free beam under an end follower thrust. It is found that the flutter thrust is reduced considerably if the aerodynamic loads are taken into account in addition to an end rocket thrust in the stability analysis of slender rocket-propelled flying bodies.

  • PDF

A Dynamic Condensation for Tall Buildings with Active Tuned Mass Damper (능동 동조질량감쇠의 고층빌딩 해석을 위한 동적압축법)

  • Jung, Yang-Ki;Qu, Zu Qing
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.21-29
    • /
    • 2006
  • It is impractical to install sensors on every floor of a tall building to measure the full state vector because of the large number of degrees of freedom. This makes it necessary to introduce reduced order control. A kind of system reduction scheme (dynamic condensation method) is proposed in this paper. This method is iterative and Guyan condensation is looked upon as an initial approximation of the iteration. Since the reduced order system is updated repeatedly until a desired one is obtained, the accuracy of the reduced order system resulting from the proposed method is much higher than that obtained from the Guyan condensation method. An eigenvalue shilling technique is applied to accelerate the convergence of Iteration. Two schemes to establish the reduced order system by using the proposed method are also presented and discussed in this paper. The results for a tail building with active tuned mass damper show that the proposed method is efficient for the reduced order modelling and the accuracy is very close to exact only after two iterations.

Dynamics and die design in continuous and patch slot coating processes (Continuous 와 pattern slot 코팅 공정에서의 유동특성과 다이 설계)

  • Kim Su-Yeon;Shim Seo-Hoon;Shin Dong-Myeong;Lee Joo-Sung;Jung Hyun-Wook;Hyun Jae-Chun
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2006.06a
    • /
    • pp.81-84
    • /
    • 2006
  • Slot coating process, in continuous and patch modes, has been applied for the many precise coating products, e.g., flat panel displays and second batteries. However, manufacturing uniform coating products is not a trivial task at high-speed operations because various flow instabilities or defects such as leaking, bubbles, ribbing, and rivulets are frequently observed in this process. It is no wonder, therefore, that many efforts to understand the various aspects of dynamics and coating windows of this process have been made both in academia and industry. In this study, as the first topic, flow dynamics within the coating bead in slot coating process has been investigated using the one-dimensional viscocapillary model by lubrication approximation and two-dimensional model by Flow-3D software. Especially, operability windows in both 1D and 2D cases with various slot die lip designs have been successfully portrayed. Also, effects of process conditions like viscosity and coating gap size on slot coating window have been analyzed. Also, some experiments to find minimum coating thickness and coating windows have been conducted using slot die coater implemented with flow visualization device, corroborating the numerical results. As the second topic, flow dynamics of both Newtonian and Non-Newtonian fluids in patch or pattern slot coating process, which is employed in manufacturing IT products such as secondary batteries, has been investigated for the purpose of optimal process designs. As a matter of fact, the flow control in this system is more difficult than in continuous case because od its transient or time-dependent nature. The internal die and die lip designs for patterned uniform coating products have been obtained by controlling flow behaviors of coating liquids issuing from slot. Numerical simulations have been performed using Fluent and Flow-3D packages. Flow behavior and pressure distribution inside the slot die has been compared with various die internal shapes and geometries. In the coating bead region, efforts to reduce irregular coating defects in head and tail parts of one patterned coating unit have been tried by changing die lip shapes. It has been concluded that optimal die internal design gas been developed, guaranteeing uniform velocity distribution of both Newtonian and shear thinning fluids at the die exit. And also optimal die lip design has been established, providing the longer uniform coating layer thickness within one coating unit.

  • PDF