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Tail Probability Approximations for the
Ratio of the Independent Random Variables

DaeHyeon Cho

Abstract In this paper, we study the saddlepoint approximations for the
ratio of independent random variables. In Section 2, we derive the
saddlepoint approximation to the density. And in Section 3, we derive two
approximation formulae for the tail probability, one by following Daniels'
(1987) method and the other by following Lugannani and Rice's (1980). In
Section 4, we represent some numerical examples which show that the
errors are small even for small sample size.
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1. Introduction

It is often required to approximate the distribution of some statistics whose
distribution can not be exactly obtained.

When the first few moments are known, a common procedure is to fit a law of
Edgeworth type having the same moments as far as they are given (Edgeworth (1905),
Wallace (1958)). This method is often satisfactory in practice, but can assume negative
values in the far tail region of distribution.

Daniels (1954) introduced a new type of idea into statistics by applying saddlepoint
techniques to derive a very accurate approximation to the distribution of X. He
showed that the error incurred by using the saddlepoint approximation method is
O(n™') as against the more usual O(n™""?) associated with the normal approximation.
Moreover, he showed that the relative error of the approximation is uniformly O(n™)
over the whole range of the random variable in an important class of cases. For reviews
of saddlepoint approximations, see Reid (1988) and Field and Ronchetti (1990).

In this paper, we study the saddlepoint approximations for the ratio of independent
random variables. In Section 2, we derive the saddlepoint approximation to the density.
And in Section 3, we derive two approximation formulae for the tail probability, one by
following Daniels' (1987) method and the other by following Lugannani and Rice's
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(1980). In Section 4, we represent some numerical examples which show that the
errors are small even for small sample size.

Let {U,,n21},{S, >0,n 21} be independent sequences of random variables with
absolutely continuous distribution functions F,,,F,, respectively. Denote ¢, (f) =
Elexp(tU,)} and ¢,,(¢) = E{exp(tS,)} be the moment generating functions of U,
and S,, respectively. And let w,,(t) = (1/ n)logd,, (1), and w,,(t) = (1/ n)log ¢,, (1)
be their cumulant generating function. Assume that ¢,,(¢) and y,, (f) exist for real ¢
in some interval (¢,,#,) containing 0 and that ¢,,(r) and y,, (t) exist for real ¢ in

some interval (¢;,1,) containing 0.Let R, =U, /S,.

2. Density approximations

The fact that the integrand in Fourier inversion the density of R, is of the form
exp[n{'¥'(z)}] is the starting point to derive the saddlepoint approximations for R,.
Let H, be the distribution function of R,. Then

H,(r) = B(R, <7r) = [F,m)dF,,(»). (1)
And the p.df. A, of R, is given by
h(r) = [V, (9)dF;, (9). (2)

where f, isthe p.d.f. of U,.
The characteristic function of R, is given by

by = [ e" [, (9)dF,, ()dr

= fm¢1,, (z)dﬂn(y)-
="\

Using the Fourier inversion formula, the p.d.f. A, is given by

(3)

[ ao A
h = — “h (t)dt
W) = 5= [ e R,

= 51; :{F ¢1,.(i;t)dﬂ,. (y)}dt
= - [ @|[ e - ar, s

= 5= [ 05, ity
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1 + oo
=57 Lo 4w @8 (-roe

= o [ explnty, (@) + v, (o)} <, (-r2)de (4)
where c is any real number in the interval where the moment generating function exists.
When 7 is large, an approximation is found by passing the path of integration through a
saddlepoint 7 of the exponential part of integrand given by |, (7) — ry: (-r7) = 0.
We choosectobe 7.

On the contour near 7, we have

Y, (2) + o, (-12)} = n'¥, (z)(say)

! ® (5,
) n{q}"(r) NG PR 4 P T)3+_‘}
2 6
and
W3,(—r2) = v3,(-r7) — ry (-re)(z - ©)
r’ r’ (6)
+ Wi (r)(z = ) = — ) (—re)z - o) e

2 6
Let /n¥;(r)(z - r) = iy and expanding the integrand in (4) near 7, we have

N[ o

he = [\pi] YDt Wl O,

2 2
« Y A . 3 A 4 A 6 )
A 1 _ —_—
<[ ex"( 2 )[ ovn > T 2an? "7t
_ryrn) iy R
Vin(rD) egmi 2005,(rY,

x 41

34
PY3, (=17)

X 3 y3 4. dy
6nvny;, (—ro)(¥)?

~ 314 2 152
n A=
6y, (-rr)(¥,)?
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_rva o) | (7)
2ny, (-ro)y |
where
K () = Y (rn) explntyn, (7) + (o)) ®
" 27wl (o) + riy,, (-ro)}
and
¢710))
YU = g (), A, = lp "j.,z
CHE

We call % (r) the saddlepoint approximation to h(r).

3. Tail probability approximations

In this section, We are interested in the tail probability of R, ie.,
P(R, 2 r) = H,(r) and derive two approximation formulae for it. The tail probability
can be approximated by integrating the saddlepoint approximation 4,(r) numerically,
ie.,

H,(r) = [ k(0. (9)

To obtain the explicit approximate formula for the tail probability, we must consider the
_next inversion formula.

1 +io0 . d .
B,0) = 5= [ ewplnty,, @ + yo, (DN (> 0). (10)

The above relation (10) for the tail probability of R, is obtained as follows. Since the
pdfof R, is

h(r) = 5= [ expln{yr,(c + i) + yo, (-re + IO x p3, for(e +inhdr - (11)

H,(r) = 2 .[m fmexp[n{gy," (c +it) + y,,(—=r(c + i)}l x y,,{-r(c + it)}dtdr
2z ®

1

=5 [wexp[n{Wnn(C + i)}~
ﬂ -]

(12)

w1 Sty (e + )}, Jar
Since exp{n{y,,(-r(c + i)} = ¢y, {~r(c + i)} = |; exp{-r(c + iN)x} x dF,,(x) } converges to
zero as r > o and ¢ > 0, the relation (10) is obtained. As in Daniels (1987),
expanding only ¥,(z) = v,,(2) + v,,(~rz) and integrating, we have
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— -~ 1 + ioo 1 ~ " 2
H (r) = exp(n'¥,) Py -[—ioo exp| 5 Y (z-1)

1. 1 .
x {1 + E‘P,f”(z -7’ + an‘l’,f” (z-1)*

1 oy 6 }_di
+72n(‘P,,)(z )+ -
A 1 1 +foo 1

= exp(n‘I’,, +5 122) oo f_iw exp(i- u - ﬁu)

2
x{l+£-—;(u—ﬁ)3+%{j—;(u—ﬁ)4+%(u—ﬁ)6}+“}% (13)

where u = z(n¥))"? and A, = ¥ / (‘i’,;’)"‘/ ?, j 2 3. The above tail probability H,(r)

can be found from the fact that I, = 55 [ 2exp(3 u* — fu)(u — 2)"du / u satisfies the
recurrence relations :

12m = (_ﬁ)IZm-I’ 12m+1 = (_l)mam¢(ﬁ) - ﬁlZm (14)
with [, =1 -®(@), a, =1and a, = Ix---xQ2m - 1)

Repeated applications of (14) lead to the explicit formula

f3(r=D)
1 = (=@) {1 - D@} + ()" g(@) Y. (-)"a, i """ (15)

m=0

In(13), I; = -2’ {1 - ®@)} + (&* - 1)@(&) gives the following formula.

o — 1 l ~2 _ - _ ’lsﬁB
H(r) = exp(n‘l’n + ol ) x [{1 (D(u)}(l . J;J

A

+ ¢(ﬁ) 6\/; X (ﬁz - 1)] X {1 + O(n'l)} (16)

= H!("{1+ 0(n™)} (say).

And substitution of 7, and I, in (13) gives the following formula;

N X 2.6
o oo et 2

6t  nl 24 T2
N 1(14 3 o A s s )

+ - -D-—-1—= - —_— —u 3u
¢(u){6n; @ = 1)~ | J@ - i)+ 2@ - @+ 30)

x {1+ O(n'%)}
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~ 23
= H:(D{1+O0(n 7)} (say). 17
When 7 < 0, we can also use the following inversion formula
— 1 i dz
H, (r) = h(-1) + Py f_m expiny,(2)} e (18)

where h(x) = 0,1/2,1, when x < 0,= 0,> 0, respectively. See Daniels(1987) p 43.
So, (16) can be replaced by

H,(r) = h(-il) + exp(n¥, + %ﬁz) x [{h(~d) - D@} ~ 217;
- D) S (@ = D) x 1+ 007
= H!(r) x {1 + O(n™")} (say). (19)
And (15) can be replaced by
H,(r) = h(-i) + exp{n', + %ff}[{h(—ﬁ) - D@} - i n"}

1({ 4,4 zgaﬁj oA, A . .
+n( 24 T )[BT mD =@ 1)
2

P . 3
+ %(af -2+ 3&)”] x {1+ O(n *)}

= HX(r{1 + O(n ?)} (say). (20)

We can also obtain another expression valid for any location of 7, that is an
expression which is uniform in 7. Consider the inversion formula for tail probability
once more.

B0 = 5= [Tentw,nZ, (>0, (21)

which has a pole at the origin.

As in Lugannani and Rice (1980), we can use the Bleistein's(1966) idea which has
been developed for integrals with the saddlepoint near algebraic singularity, it is a
simple pole in our case. Following the similar procedures in M.S Srivastiva and Wai
Kwok Yao(1988), we can obtain another tail probability approximation formula .

The basic idea is to find a transformation which takes account of the proximity of the
saddlepoint and simple pole for small values of z. Such transformation can be
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accomplished by putting

N

Vi(2) + Yo, (D) = 5 W = o (22;
where W = sgn(7)(-2[y,,(7) + ¥,, {—r(r)r}])% and r(7) is defined as (1) -
r(v)w;, {-r(r)r} = 0, which implies that w = 0 when 7 = 0, which, in turn, implies
that w,,(2) + w,, {~7(0)z} = $ w’. Therefore the origin remains fixed, ie., at
z=0,w(0) = 0.
By differentiating (22) w.r.t. w, we obtain

dz w-w

—— = (23)
vy, @) - oW (D)
If r=0,ie, r=EU,)/ E(S,), then we have
-1 Vi Vg
(L) vile) = W, rie)) 20)
dz aw w
Using L'hospital's rule, we have
aw :
= w0 = WL 0) + Fy, (O (25)
However 7 # 0, ie, r = E(U,)/ E(S,)
dw rQ)y;,(0) — v, (0)
— = y n 2
dz |z=0 \:{) ( 6)
Thus we obtain
r(@Y,0) - ¥}, ) / w,if r = EU,) / E(S,)
c=w0) =15 2 oad , (27)
w0 +riyn 0},  ifr=EU,)/ ES,),
and that
We W) = W) 4w @z + 2 o<
= w(z) = w0z + ——=—z", for (28)

=0+cz+o0(z2), asz-> 0

From which, we can see that w ~ ¢z when z is small, which implies z/ w ~ dz / dw
~¢' or zdz/dw)~w"' when z is small. Since dz/dw is analytic in
neighborhood of w=0, so is z™'(dz / dw) — w™

Using the transformation given in (22), the formula (21) transforms to
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H(r) = .[:V_j exp{n(%w - ww)}(l Zd%)dw

= o= fexpin- ~ ) 22

exp(— nw )Lv ldz 1

“expl (v - ) }(— & _L,

w.

=1 +1 (SaY) (29)

To find the value of [,, we need only to see that it is indeed the inversion formula
for the tail probability A,(X > W) = ®(-Vnw), where X is the sample mean from i.i.d.
N(@©,1)

And following the arguments as in M.S. Srivastava and W.K. Yao(1988) we obtain
the relation that

s Qon an
1 - gl S - ] (30)
n
where
_1 1 (Sf 44_)1 Lo L1 gt
aOn—/'l w’aZn 24 8 ) 2/}2 ﬁ3‘»~3aﬂ—7(n

and a, , = O(1) forall k£ >0. Thus,vby substituting the above results in (27) we
have the following approximation formula for the ratio R, ;

H(r)~<D(~/_W)+¢(~/—)[\/9'1 a} )

—@(J‘w)+¢(fw)ji+0(n 2)

3
= H*(r) + O(n ?) (say) (31)

where a,,'s are the same as above.
In (31), ay ,s(k > 0) are uniformly bounded as 7,4 and W cross the origin (see
Srivastiva and Yao (1988)).

4. Numerical example

In this section, we present an example to show that the errors of our approximations
formulae are small.

Example 4.1. Assume that {U,} and {S,} have x’(n) distribution and are
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independent. Then R, = U, / S, follows F-distribution with (», n ) degrees of freedom.
By definition, we have
_n 1
¢in(z) = (1 - 22) 2 ’ W,’,,(z) = -Elog(l - 22),
Wi(2) =(1-22)"" and y? =2(1-22)72(i = 1,2).

So the saddlepoint equation becomes y,,(z) — ry;,(-r7) =0 and 7 = (r - 1) / (4r).
Therefore the saddlepoint approximation to the p.d.f. of R, is given by

\/;y/;n(—rz') explni{y,,(7) + v,,(-r1)}]

1
R2z{y),(2) + riys, (-ro)})?

( n )]5 2"“r%—l
"\ a+n" (32)

The exact p.d.f. of R, is well known as

h(r) =

NG (33)
I (n/2)Q+r)"

Note that the ratio B, = &,(r) / h,(r) = Y2z / n / {T*(n/2)2""'} does not depend on r and
is nearly 1 as » increases. We can see that the error is uniformly small in this case.
We can obtain the exact tail probability by integrating 4,(r) fromrto o, i.e.,

h" (r) =

Cx? (34)

0= emnar s

From (16) and (17) we obtain two approximation formulae for the tail probability of R,
1.e., Since

. 167 ., L 25 .48
yr o @ _-__ - = = =

n (r + 1)2 > n O’ LPn (r + 1)4 ’ 2’3 O’ 14 6
FL(r) = h(=3) + ex fm(””y+ﬁV"gz

mir) = T2 "2

x {h(—é) - d)(JZ: " D} (35)

and
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P R 1 2 —1 )
Aot o venf- 2l 05

oy 6 6
x[{h(—z)—@(z>}2—4;z —2—4;¢(z)<z’—z>} (36)

Where,z = Vn(r = 1)/ (» + 1), h(x) = 0,1/ 2,1 when x < 0,= 0,> 0, respectively.

From (31) we can obtain another approximation formula for the tail probability of
R, as follows;

= 1 11
H™(r)y = &(=vni) + g(J/n) 7——”‘{2 - ;} (37)

w

where, 4 = r(dD,’,'Pl and w = sgn(7){log (%':i}?l

Table 1 ~ Table 3 represent the numerical results of (34), (35), (36), (37) when n=2, 4,
16, with increasing r by 0.2.

The exact values of F-distributions are computed from IMSL. From the tables, we can
see that the errors of approximation formulae of (16),(17) and (31) are small and that the
results of (36) are more accurate than those of (35) in this case.
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Table 1. Exact probability from (34) and approximations H! from (35), H? from (36)

and HX from (37) for P.{F(2,2) > r} with increasing r by 0.2

r Exact H H? HX®

d 0.9090909 0.9201847 0.9087645 0.9062693

3 0.7692307 0.7882282 0.7679988 0.7663489

) 0.6666667 0.6834431 0.6652367 0.6646699

v 0.5882353 0.5987377 0.5872363 0.5871334

9 0.5263158 0.5296686 0.5259858 0.5259482
1.0 0.5000000 0.5000000 0.5000000 0.5000000
1.1 0.4761904 0.4731556 0.4764897 0.4766421
1.3 0.4347826 0.4269092 0.4355608 0.4356063
1.5 0.4000000 0.3891510 0.4011196 0.4012423
1.7 0.3703703 0.3584602 0.3717733 0.3719602
1.9 0.3448275 0.3336820 0.3465602 0.3467019
2.1 0.3225806 0.3138670 0.3247937 0.3246891
2.3 0.3030303 0.2982295 0.3059649 0.3053323
2.5 0.2857143 0.2861151 0.2896828 0.2881766
2.7 0.2702702 0.2769766 0.2756359 0.2728652
2.9 0.2564102 0.2703549 0.2635686 0.2591152
3.1 0.2439024 0.2658640 0.2532657 0.2466982
33 0.2325581 0.2631778 0.2445425 0.2354289
3.5 0.2222222 0.2620202 0.2372370 0.2251545
3.7 0.2127659 0.2621581 0.2312074 0.2157484
3.9 0.2040816 0.2633923 0.2263262 0.2071046
4.1 0.1960784 0.2655538 0.2224799 0.1991337
43 0.1886792 0.2684984 0.2195667 0.1917598
45 0.1818182 0.2721027 0.2174943 0.1849180
4.7 0.1754386 0.2762612 0.2161795 0.1785525
49 0.1694915 0.2808834 0.2155469 - 0.1726150
5.1 0.1639344 0.2858917 0.2155288 0.1670637
5.3 0.1587301 0.2912192 0.2160628 0.1618618
5.5 0.1538461 0.2968087 0.2170936 0.1569774
5.7 0.1492537 0.3026108 0.2185703 0.1523821
5.9 0.1449275 0.3085827 0.2204467 0.1480507
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Table 2. Exact probability from (34) and approximations H! from (35), H? from (36)
and A2 from (37) for P . {F(4,4) > r} with increasing » by 0.2

Dae Hyeon Cho

r Exact H! A2 g iR

1 0.9767092 0.9787889 0.9767641 0.9763958
3 0.8648155 0.8732643 0.8647730 0.8641580

) 0.7407408 0.7508543 0.7404818 0.7401797
7 0.6309789 0.6382922 0.6307098 0.6306437
9 0.5394372 0.5419201 0.5393354 0.5393090
1.0 0.5000000 0.5000000 0.5000000 0.5000000
1.1 0.4643127 0.4620604 0.4644052 0.4645124
13 0.4027287 0.3969803 0.4029525 0.4029841
1.5 0.3520000 0.3440123 0.3522837 0.3523745
1.7 0.3099121 0.3006226 0.3102054 0.3103792
1.9 0.2747139 0.2647627 0.2749883 0.2752488
2.1 0.2450405 0.2348481 0.2452818 0.2456237
2.3 0.2198292 0.2096659 0.2200327 0.2204462
2.5 0.1982507 0.1882858 0.1984163 0.1988901
2.7 0.1796537 0.1699897 0.1797838 0.1803066
29 0.1635227 0.1542181 0.1636209 0.1641822
3.1 0.1494465 0.1405312 0.1495169 0.1501075
33 0.1370949 0.1285795 0.1371412 0.1377532
3.5 0.1262003 0.1180836 0.1262261 0.1268529
3.7 0.1165445 0.1088174 0.1165529 0.1171892
39 0.1079482 0.1005970 0.1079420 - 0.1085832
4.1 0.1002631 0.9327122 0.1002447 0.1008872
4.3 0.0933656 0.0867153 0.0933371 0.0939778
4.5 0.0871525 0.0808255 0.0871156 0.0877522
4.7 0.0815365 0.0755146 0.0814927 0.0821235
4.9 0.0764440 0.0707094 0.0763946 0.0770179
5.1 0.0718121 0.0663478 0.0717582 0.0723729
5.3 0.0675872 0.0623778 0.0675297 0.0681348
5.5 0.0637232 0.0587517 0.0636627 0.0642578
5.7 0.0601803 0.0554330 0.0601176 0.0607019
5.9 0.0569238 0.0523874 0.0568595 0.0574329
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Table 3. Exact probability from (34) and approximations H,' from (35), H? from (36)

and AR from (37) for P.{F(16,16) > r} with increasing r by 0.2

T Exact ! A2 HIR

d 0.9999833 0.9999839 0.9999834 0.9999833
3 0.9894283 0.9897301 0.9894339 0.9894191
S 0.9117686 0.9135296 0.9117789 0.9117389
7 0.7581858 0.7608190 0.7581771 0.7581565
9 0.5821548 0.5833845 0.5821451 0.5821324
1.0 0.5000000 0.5000000 0.5000000 0.5000000
1.1 0.4255825 0.4244589 0.4255913 0.4256431
1.3 0.3029717 0.3005737 0.3029850 0.3029969
1.5 0.2131033 0.2104668 0.2131089 0.2131343
1.7 0.1494310 0.1470498 0.1494277 0.1494636
1.9 0.1050326 0.1030616 0.1050237 0.1050637
2.1 0.0742443 0.0726825 0.0742328 0.0742720
2.3 0.0528793 0.0516696 0.0528675 0.0529034
2.5 0.0379884 0.0370616 0.0379773 0.0380087
2.7 0.0275411 0.0268343 0.0275312 0.0275580
29 0.0201534 0.0196146 0.0201450 0.0201674
3.1 0.0148844 0.0144729 0.0148774 0.0148959
33 0.0110930 0.0107776 0.0110872 0.0111025
3.5 0.0083404 0.0080976 0.0083357 0.0083482
3.7 0.0063243 0.0061363 0.0063204 0.0063306
3.9 0.0048348 0.0046885 0.0048316 0.0048400
4.1 0.0037250 0.0036105 0.0037224 0.0037293
43 0.0028914 0.0028014 0.0028893 0.0028950
4.5 0.0022604 0.0021891 0.0022587 0.0022633
4.7 0.0017791 0.0017224 0.0017777 0.0017816
49 0.0014094 0.0013641 0.0014083 - 0.0014115
5.1 0.0011234 0.0010870 0.0011225 0.0011252
53 0.0009008 0.0008713 0.0009000 0.0009022
5.5 0.0007264 0.0007024 0.0007257 0.0007275
5.7 0.0005888 0.0005693 0.0005883 0.0005898
5.9 0.0004798 0.0004638 0.0004793 0.0004806




