• Title/Summary/Keyword: Two-step solution

Search Result 497, Processing Time 0.024 seconds

Design Space Exploration for NoC-Style Bus Networks

  • Kim, Jin-Sung;Lee, Jaesung
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1240-1249
    • /
    • 2016
  • With the number of IP cores in a multicore system-on-chip increasing to up to tens or hundreds, the role of on-chip interconnection networks is vital. We propose a networks-on-chip-style bus network as a compromise and redefine the exploration problem to find the best IP tiling patterns and communication path combinations. Before solving the problem, we estimate the time complexity and validate the infeasibility of the solution. To reduce the time complexity, we propose two fast exploration algorithms and develop a program to implement these algorithms. The program is executed for several experiments, and the exploration time is reduced to approximately 1/22 and 7/1,200 at the first and second steps of the exploration process, respectively. However, as a trade-off for the time saving, the time cost (TC) of the searched architecture is increased to up to 4.7% and 11.2%, respectively, at each step compared with that of the architecture obtained through full-case exploration. The reduction ratio can be decreased to 1/4,000 by simultaneously applying both the algorithms even though the resulting TC is increased to up to 13.1% when compared with that obtained through full-case exploration.

Evaluation of Ramp Test Using Human Perception (인지적 평가기준을 이용한 Ramp Test의 특성평가)

  • Kim, Jung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.9-14
    • /
    • 2012
  • The objectives of this study were to compare the results of HSL (Health and Safety Laboratory) ramp test with perceived sense of slip onto the several different floor surfaces under contaminated conditions. There are a variety of approaches from biomechanical measurements to psychophysical test and human perception. However, controversies over these approaches still remain. Some widely accepted methods need to be improved. AHP (Analytic Hierarchy Process) was used to evaluate the perception of slipperiness of seven different floor surfaces under the contaminated condition with glycerol solution. Twelve subjects worn same footwear and walked with self-selected step and cadence along the test floors. The angle of inclination obtained for water wet condition using 5 l/min with HSL ramp test was compared to perception of slipperiness. The surface roughness ($R_z$) related very well both AHP (r=0.95) and ramp test (r=0.92). The high significant correlation (r=0.90) was found between AHP and HSL ramp test.The HSL ramp test values (Coefficient of Friction, COF) according to subjective evaluation were divided into two categories. There were high correlations between test results (subjective evaluation, HSL ramp test) and surface roughness in Rz. Perception rating obtained with AHP showed a high correlation with COF obtained with HSL ramp test.

INTERACTIVE SYSTEM DESIGN USING THE COMPLEMENTARITY OF AXIOMATIC DESIGN AND FAULT TREE ANALYSIS

  • Heo, Gyun-Young;Lee, Tae-Sik;Do, Sung-Hee
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.51-62
    • /
    • 2007
  • To efficiently design safety-critical systems such as nuclear power plants, with the requirement of high reliability, methodologies allowing for rigorous interactions between the synthesis and analysis processes have been proposed. This paper attempts to develop a reliability-centered design framework through an interactive process between Axiomatic Design (AD) and Fault Tree Analysis (FTA). Integrating AD and FTA into a single framework appears to be a viable solution, as they compliment each other with their unique advantages. AD provides a systematic synthesis tool while FTA is commonly used as a safety analysis tool. These methodologies build a design process that is less subjective, and they enable designers to develop insights that lead to solutions with improved reliability. Due to the nature of the two methodologies, the information involved in each process is complementary: a success tree versus a fault tree. Thus, at each step a system using AD is synthesized, and its reliability is then quantified using the FT derived from the AD synthesis process. The converted FT provides an opportunity to examine the completeness of the outcome from the synthesis process. This study presents an example of the design of a Containment Heat Removal System (CHRS). A case study illustrates the process of designing the CHRS with an interactive design framework focusing on the conversion of the AD process to FTA.

A Numerical Method for Dispersion of Unsteady Horizontal Line Source in Turbulent Shear Flow (난류전단 흐름에서의 비정상 수평 선오염원의 확산에 관한 수치해법)

  • 전경수
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.187-198
    • /
    • 1996
  • A numerical model for unsteady dispersion of horizontal line source in turbulent shear flow is developed. A fractional step finite difference method is used which splits the unsteady two-dimensional advective diffusion equation into the longitudinal advection and the vertical diffusion equations, and solves them alternately for half time intervals by the Holly-Preissmann scheme and the Crank-Nicholson scheme, respectively. The developed numerical model is verified using a semi-analytic solution for steady dispersion in turbulent shear flow. Dispersion of an instantaneous plane source in turbulent shear flow is analyzed using the model. The degree of mixing at the same dimensionless time is almost the same regardless of the friction factor, and the travel distance required to reach a certain degree of mixing is inversely proportional to the square root of the friction factor.

  • PDF

Shape optimal design of elastic structures by the domain adaptive method (領域適應法을 利용한 彈性體 形狀의 最適設計)

  • 정균양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.234-242
    • /
    • 1987
  • The solution of shape design problems based on variational analysis has been approached by using the domain adaptive method. The objective of the structural shape design is to minimize the weight within a bound on local stress measure, or to minimize the maximum local stress measure within a bound on the weight. A derived optimality condition in both design problems requires that the unit mutual energy has constant value along the design boundary. However, the condition for constant stress on the design boundary was used in computation since the computed mutual energy oscillates severely on the boundary. A two step iteration scheme using domain adaptation was presented as a computational method to slove the example designs of elastic structures. It was also shown that remeshing by grid adaptation was effective to reduce oscillatory behavior on the design boundary.

Electrochemical Behavior of Mordant Red 19 and its Complexes with Light Lanthanides

  • Sang Kwon Lee;Taek Dong Chung;Song-Ju Lee;Ki-Hyung Chjo;Young Gu Ha;Ki-Won Cha;Hasuck Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.567-574
    • /
    • 1993
  • Mordant Red 19(MR19) is reduced at mercury electrode at -0.67 V vs. Ag/AgCl with two electrons per molecule in pH 9.2 buffer by differential pulse polarography and linear sweep voltammetry. The peak potential is dependent on the pH of solution. The exhaustive electrolysis, however, gives 4 electrons per molecule because of the disproportionation of the unstable hydrazo intermediate. The electrochemical reduction of lanthanide-MR19 complexes is observed at more cathodic potential than that of free ligand. The difference in peak potentials between complex and free ligand varies from 75 mV for $La^{3+}$ to 165 mV for $Tb^{3+}$ and increases with increasing the atomic number of lanthanide. The electrochemical reduction of lanthanide complexes with MR19 is due to the reduction of ligand itself, and it can be potentially useful as an indirect method for the determination of lanthanides. The shape of i-E curves and the scan rate dependence indicates the presence of adsorption and the adsorption was confirmed by potential double-step chronocoulometry and the effect of standing time. Also the surface excess of the adsorbed species and diffusion coefficients are determined. The composition of the complex is determined to be 1 : 2 by spectrophotometric and electrochemical methods.

A fast and robust procedure for optimal detail design of continuous RC beams

  • Bolideh, Ameneh;Arab, Hamed Ghohani;Ghasemi, Mohammad Reza
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.313-327
    • /
    • 2019
  • The purpose of the present study is to present a new approach to designing and selecting the details of multidimensional continuous RC beam by applying all strength, serviceability, ductility and other constraints based on ACI318-14 using Teaching Learning Based Optimization (TLBO) algorithm. The optimum reinforcement detailing of longitudinal bars is done in two steps. in the first stage, only the dimensions of the beam in each span are considered as the variables of the optimization algorithm. in the second stage, the optimal design of the longitudinal bars of the beam is made according to the first step inputs. In the optimum shear reinforcement, using gradient-based methods, the most optimal possible mode is selected based on the existing assumptions. The objective function in this study is a cost function that includes the cost of concrete, formwork and reinforcing steel bars. The steel used in the objective function is the sum of longitudinal and shear bars. The use of a catalog list consisting of all existing patterns of longitudinal bars based on the minimum rules of the regulation in the second stage, leads to a sharp reduction in the volume of calculations and the achievement of the best solution. Three example with varying degrees of complexity, have been selected in order to investigate the optimal design of the longitudinal and shear reinforcement of continuous beam.

Study on Solvent Mediated Phase Transformation Kinetics of Hexanitrohexaazaisowurtzitane(HNIW) (용매를 매체로 한 Hexanitrohexaazaisowurtzitane(HNIW)의 상전이 속도에 관한 연구)

  • 김준형;임유진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.9-17
    • /
    • 2000
  • The crystal growth and dissolution rates were calculated by solving a model equation, which involved the dissolution of the metastable phase($\beta$-HNIW) and growth of the stable phase($\varepsilon$-HNIW), together with the mass balance equation. The model has been successfully used to simulate available kinetic data for the $\beta$$\longrightarrow$$\varepsilon$ polymorphic transformation via a solution phase. From the effectiveness factor based on the two-step model, it was found that the surface integration contribution to the process was comparatively small, and a diffusion dependency decreased with an increase of the mass fraction of chloroform in the mixed solvents of ethyl acetate and chloroform. Appling these kinetics in process simulation allowed for the prediction of the product size of $\varepsilon$-HNIW.

  • PDF

Recent Development in Fabrication and Control of Layered-Double Hydroxide Nanostructures (층상 이중 수산화물 나노물질의 성장 제어기술 연구동향)

  • Jeon, Chan-Woo;Park, Il-Kyu
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.514-522
    • /
    • 2018
  • Layered-double hydroxide (LDH)-based nanostructures offer the two-fold advantage of being active catalysts with incredibly large specific surface areas. As such, they have been studied extensively over the last decade and applied in roles as diverse as light source, catalyst, energy storage mechanism, absorber, and anion exchanger. They exhibit a unique lamellar structure consisting of a wide variety of combinations of metal cations and various anions, which determine their physical and chemical performances, and make them a popular research topic. Many reviewed papers deal with these unique properties, synthetic methods, and applications. Most of them, however, are focused on the form-factor of nanopowder, as well as on the control of morphologies via one-step synthetic methods. LDH nanostructures need to be easy to control and fabricate on rigid substrates such as metals, semiconductors, oxides, and insulators, to facilitate more viable applications of these nanostructures to various solid-state devices. In this review, we explore ways to grow and control the various LDH nanostructures on rigid substrates.

An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber

  • Nguyen, Xuan Ha;Kim, ChiHyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.369-376
    • /
    • 2019
  • A complete solution for a soluble-boron-free (SBF) small modular reactor (SMR) is pursued with a new burnable absorber concept, namely centrally-shielded burnable absorber (CSBA). Neutronic flexibility of the CSBA design has been discussed with fuel assembly (FA) analyses. Major design parameters and goals of the SBF SMR are discussed in view of the reactor core design and three CSBA designs are introduced to achieve both a very low burnup reactivity swing (BRS) and minimal residual reactivity of the CSBA. It is demonstrated that the core achieves a long cycle length (~37 months) and high burnup (~30 GWd/tU), while the BRS is only about 1100 pcm and the radial power distribution is rather flat. This research also introduces a supplementary reactivity control mechanism using stainless steel as mechanical shim (MS) rod to obtain the criticality during normal operation. A further analysis is performed to investigate the local power peaking of the CSBA-loaded FA at MS-rodded condition. Moreover, a simple $B_4C$-based control rod arrangement is proposed to assure a sufficient shutdown margin even at the cold-zero-power condition. All calculations in this neutronic-thermal hydraulic coupled investigation of the 3D SBF SMR core are completed by a two-step Monte Carlo-diffusion hybrid methodology.