Browse > Article
http://dx.doi.org/10.12989/cac.2019.24.4.313

A fast and robust procedure for optimal detail design of continuous RC beams  

Bolideh, Ameneh (Civil Engineering Department, University of Sistan and Baluchestan)
Arab, Hamed Ghohani (Civil Engineering Department, University of Sistan and Baluchestan)
Ghasemi, Mohammad Reza (Civil Engineering Department, University of Sistan and Baluchestan)
Publication Information
Computers and Concrete / v.24, no.4, 2019 , pp. 313-327 More about this Journal
Abstract
The purpose of the present study is to present a new approach to designing and selecting the details of multidimensional continuous RC beam by applying all strength, serviceability, ductility and other constraints based on ACI318-14 using Teaching Learning Based Optimization (TLBO) algorithm. The optimum reinforcement detailing of longitudinal bars is done in two steps. in the first stage, only the dimensions of the beam in each span are considered as the variables of the optimization algorithm. in the second stage, the optimal design of the longitudinal bars of the beam is made according to the first step inputs. In the optimum shear reinforcement, using gradient-based methods, the most optimal possible mode is selected based on the existing assumptions. The objective function in this study is a cost function that includes the cost of concrete, formwork and reinforcing steel bars. The steel used in the objective function is the sum of longitudinal and shear bars. The use of a catalog list consisting of all existing patterns of longitudinal bars based on the minimum rules of the regulation in the second stage, leads to a sharp reduction in the volume of calculations and the achievement of the best solution. Three example with varying degrees of complexity, have been selected in order to investigate the optimal design of the longitudinal and shear reinforcement of continuous beam.
Keywords
continuous beam; optimization; reinforced concrete; teaching learning based optimization algorithm; reinforcement detailing; cost function;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kanagasundaram, S. and Karihaloo, B.L. (1991), "Minimum-cost reinforced concrete beams and columns", Comput. Struct., 41(3), 509-518. https://doi.org/10.1016/0045-7949(91)90145-C.   DOI
2 Kanno, Y. (2019), "Alternating direction method of multipliers as simple heuristic for topology optimization of a truss with uniformed member cross sections", J. Mech. Des., 141(1), 011403. https://doi.org/10.1115/1.4041174.   DOI
3 Kaveh, A. and Sabzi, O. (2011), "A comparative study of two meta-heuristic algorithms for optimum design of reinforced concrete frames", Int. J. Civil Eng., 9(3), 193-206.
4 Kirsch, U. (1983), "Multilevel optimal design of reinforced concrete structures", Eng. Optim., 6(4), 207-212. https://doi.org/10.1080/03052158308902471.   DOI
5 Koumousis, V.K. and Arsenis, S.J. (1998), "Genetic algorithms in optimal detailed design of reinforced concrete members", Comput-Aid. Civil Infrastr. Eng., 13(1), 43-52. https://doi.org/10.1111/0885-9507.00084.   DOI
6 Leps, M. and Sejnoha, M. (2003), "New approach to optimization of reinforced concrete beams", Comput. Struct., 81(18-19), 1957-1966. https://doi.org/10.1016/S0045-7949(03)00215-3.   DOI
7 Mergos, P.E. (2018), "Seismic design of reinforced concrete frames for minimum embodied $CO_2$ emissions", Energy Build., 162, 177-186. https://doi.org/10.1016/j.enbuild.2017.12.039.   DOI
8 Mezura-Montes, E. and Coello, C.A.C. (2011), "Constrainthandling in nature-inspired numerical optimization: past, present and future", Swarm Evol. Comput., 1(4), 173-194. https://doi.org/10.1016/j.swevo.2011.10.001.   DOI
9 Munk, D.J., Vio, G.A. and Steven, G.P. (2015), "Topology and shape optimization methods using evolutionary algorithms: a review", Struct. Multidisip. O., 52(3), 613-631. https://doi.org/10.1007/s00158-015-1261-9.   DOI
10 Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017), "A novel heuristic search algorithm for optimization with application to structural damage identification", Smart. Struct. Syst., 19, 449-461. https://doi.org/10.12989/sss.2017.19.4.449.   DOI
11 Ozturk, H.T., Durmus, A. and Durmus, A. (2012), "Optimum design of a reinforced concrete beam using artificial bee colony algorithm", Comput. Concrete, 10(3), 295-306. https://doi.org/10.12989/cac.2012.10.3.295.   DOI
12 Prakash, A., Agarwala, S.K. and Singh, K.K. (1988), "Optimum design of reinforced concrete sections", Comput. Struct., 30(4), 1009-1011. https://doi.org/10.1016/0045-7949(88)90142-3.   DOI
13 Paya-Zaforteza, I., Yepes, V., Hospitaler, A. and Gonzalez-Vidosa, F. (2009), "$CO_2$-optimization of reinforced concrete frames by simulated annealing", Eng. Struct., 31(7), 1501-1508. https://doi.org/10.1016/j.engstruct.2009.02.034.   DOI
14 Perera, R. and Vique, J. (2009), "Strut-and-tie modelling of reinforced concrete beams using genetic algorithms optimization", Constr. Build. Mater., 23(8), 2914-2925. https://doi.org/10.1016/j.conbuildmat.2009.02.016.   DOI
15 Perez, J.L., Cladera, A., Rabuñal, J.R. and Martinez-Abella, F. (2012), "Optimization of existing equations using a new genetic programming algorithm: Application to the shear strength of reinforced concrete beams", Adv. Eng. Softw., 50, 82-96. https://doi.org/10.1016/j.advengsoft.2012.02.008.   DOI
16 Rao, R.V. and More, K.C. (2015), "Optimal design of the heat pipe using TLBO (teaching-learning-based optimization) algorithm", Energy, 80, 535-544. https://doi.org/10.1016/j.energy.2014.12.008.   DOI
17 Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems", Comput. Aid. Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015.   DOI
18 Amir, O. and Shakour, E. (2018), "Simultaneous shape and topology optimization of prestressed concrete beams", Struct. Multidisip. O., 57(5), 1831-1843. https://doi.org/10.1007/s00158-017-1855-5.   DOI
19 Tapao, A. and Cheerarot, R. (2017), "Optimal parameters and performance of artificial bee colony algorithm for minimum cost design of reinforced concrete frames", Eng. Struct., 151, 802-820. https://doi.org/10.1016/j.engstruct.2017.08.059.   DOI
20 Wang, B.C., Li, H.X. and Feng, Y. (2018), "An improved teaching-learning-based optimization for constrained evolutionary optimization", Inform. Sci., 456, 131-144. https://doi.org/10.1016/j.ins.2018.04.083.   DOI
21 Arab, H.G. and Ghasemi, M.R. (2015), "A fast and robust method for estimating the failure probability of structures", P. I. Civil Eng.-Struct. B., 168(4), 298-309. https://doi.org/10.1680/stbu.13.00091.   DOI
22 Chakrabarty, B.K. (1992), "Models for optimal design of reinforced concrete beams", Comput. Struct., 42(3), 447-451. https://doi.org/10.1016/0045-7949(92)90040-7.   DOI
23 Akin, A. and Saka, M.P. (2015), "Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions", Comput. Struct., 147, 79-95. https://doi.org/10.1016/j.compstruc.2014.10.003.   DOI
24 Barros, M.H.F.M., Martins, R.A.F. and Barros, A.F.M. (2005), "Cost optimization of singly and doubly reinforced concrete beams with EC2-2001", Struct. Multidisip. O., 30(3), 236-242. https://doi.org/10.1007/s00158-005-0516-2.   DOI
25 Chakrabarty, B.K. (1992), "Model for optimal design of reinforced concrete beam", J. Struct. Eng., ASCE, 118(11), 3238-3242. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3238).   DOI
26 Cheng, M.Y. and Prayogo, D. (2017), "A novel fuzzy adaptive teaching-learning-based optimization (FATLBO) for solving structural optimization problems", Eng. Comput., 33(1), 55-69. https://doi.org/10.1007/s00366-016-0456-z.   DOI
27 ACI 318 (2014), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, USA.
28 Chou, T. (1977), "Optimum reinforced concrete T-beam sections", J. Struct. Div., ASCE, 103(ASCE 13120).
29 Coello, C.C., Christiansen, A.D. and Hernandez, F.S. (1997), "A simple genetic algorithm for the design of reinforced concrete beams", Eng. Comput., 13(4), 185-196. https://doi.org/10.1007/BF01200046.   DOI
30 Deb, K. (2000), "An efficient constraint handling method for genetic algorithms", Comput. Meth. Appl. M., 186(2-4), 311-338. https://doi.org/10.1016/S0045-7825(99)00389-8.   DOI
31 Dizangian, B. and Ghasemi, M.R. (2015), "Ranked-based sensitivity analysis for size optimization of structures", J. Mech. Des., 137(12), 121402. https://doi.org/10.1115/1.4031295.   DOI
32 Sharafi, P., Hadi, M.N. and Teh, L.H. (2012), "Geometric design optimization for dynamic response problems of continuous reinforced concrete beams", J. Comput. Civil Eng., 28(2), 202-209. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000263.   DOI
33 Sanchez-Olivares, G. and Tomas, A. (2017), "Improvements in meta-heuristic algorithms for minimum cost design of reinforced concrete rectangular sections under compression and biaxial bending", Eng. Struct., 130, 162-179. https://doi.org/10.1016/j.engstruct.2016.10.010.   DOI
34 Sarma, K.C. and Adeli, H. (1998), "Cost optimization of concrete structures", J. Struct. Eng., ASCE, 124(5), 570-578. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(570).   DOI
35 Senouci, A.B. and Al-Ansari, M.S. (2009), "Cost optimization of composite beams using genetic algorithms", Adv. Eng. Softw., 40(11), 1112-1118. https://doi.org/10.1016/j.advengsoft.2009.06.001.   DOI
36 Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2012), "Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems", Inform. Sci., 183(1), 1-15. https://doi.org/10.1016/j.ins.2011.08.006.   DOI
37 Friel, L.L. (1974), "Optimum singly reinforced concrete sections", ACI J., 71(11), 556-558.
38 Farshchin, M., Camp, C.V. and Maniat, M. (2016), "Multi-class teaching-learning-based optimization for truss design with frequency constraints", Eng. Struct., 106, 355-369. https://doi.org/10.1016/j.engstruct.2015.10.039.   DOI
39 Fedghouche, F. (2017), "Cost optimum design of doubly reinforced high strength concrete T-beams", Sci. Iran., 24(2), 476.
40 Fedghouche, F. and Tiliouine, B. (2012), "Minimum cost design of reinforced concrete T-beams at ultimate loads using Eurocode2", Eng. Struct., 42, 43-50. https://doi.org/10.1016/j.engstruct.2012.04.008.   DOI
41 Gandomi, A.H., Kashani, A.R., Roke, D.A. and Mousavi, M. (2017), "Optimization of retaining wall design using evolutionary algorithms", Struct. Multidisip. O., 55(3), 809-825. https://doi.org/10.1007/s00158-016-1521-3.   DOI
42 Jahjouh, M.M., Arafa, M.H. and Alqedra, M.A. (2013), "Artificial Bee Colony (ABC) algorithm in the design optimization of RC continuous beams", Struct. Multidisip. O., 47(6), 963-979. https://doi.org/10.1007/s00158-013-0884-y.   DOI
43 Govindaraj, V. and Ramasamy, J.V. (2005), "Optimum detailed design of reinforced concrete continuous beams using genetic algorithms", Comput. Struct., 84(1-2), 34-48. https://doi.org/10.1016/j.compstruc.2005.09.001.   DOI
44 Guerra, A. and Kiousis, P.D. (2006), "Design optimization of reinforced concrete structures", Comput. Concrete, 3(5), 313-334. https://doi.org/10.12989/cac.2006.3.5.313.   DOI
45 Hanoon, A.N., Jaafar, M.S., Hejazi, F. and Aziz, F.N.A. (2017), "Strut-and-tie model for externally bonded CFRP-strengthened reinforced concrete deep beams based on particle swarm optimization algorithm: CFRP debonding and rupture", Constr. Build. Mater., 147, 428-447. https://doi.org/10.1016/j.conbuildmat.2017.04.094.   DOI