• 제목/요약/키워드: Two-phase Flow Pattern

검색결과 143건 처리시간 0.024초

Preconditioned Jacobian-free Newton-Krylov fully implicit high order WENO schemes and flux limiter methods for two-phase flow models

  • Zhou, Xiafeng;Zhong, Changming;Li, Zhongchun;Li, Fu
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.49-60
    • /
    • 2022
  • Motivated by the high-resolution properties of high-order Weighted Essentially Non-Oscillatory (WENO) and flux limiter (FL) for steep-gradient problems and the robust convergence of Jacobian-free Newton-Krylov (JFNK) methods for nonlinear systems, the preconditioned JFNK fully implicit high-order WENO and FL schemes are proposed to solve the transient two-phase two-fluid models. Specially, the second-order fully-implicit BDF2 is used for the temporal operator and then the third-order WENO schemes and various flux limiters can be adopted to discrete the spatial operator. For the sake of the generalization of the finite-difference-based preconditioning acceleration methods and the excellent convergence to solve the complicated and various operational conditions, the random vector instead of the initial condition is skillfully chosen as the solving variables to obtain better sparsity pattern or more positions of non-zero elements in this paper. Finally, the WENO_JFNK and FL_JFNK codes are developed and then the two-phase steep-gradient problem, phase appearance/disappearance problem, U-tube problem and linear advection problem are tested to analyze the convergence, computational cost and efficiency in detailed. Numerical results show that WENO_JFNK and FL_JFNK can significantly reduce numerical diffusion and obtain better solutions than traditional methods. WENO_JFNK gives more stable and accurate solutions than FL_JFNK for the test problems and the proposed finite-difference-based preconditioning acceleration methods based on the random vector can significantly improve the convergence speed and efficiency.

Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe

  • Chung, Soh-Myung;Seo, Yong-Seok;Jeon, Gyu-Mok;Kim, Jae-Won;Park, Jong-Chun
    • 한국해양공학회지
    • /
    • 제35권1호
    • /
    • pp.50-58
    • /
    • 2021
  • The demand for eco-friendly energy is expected to increase due to the recently strengthened environmental regulations. In particular, the flow inside the pipe used in a cargo handling system (CHS) or fuel gas supply system (FGSS) of hydrogen transport ships and hydrogen-powered ships exhibits a very complex pattern of multiphase-thermal flow, including the boiling phenomenon and high accuracy analysis is required concerning safety. In this study, a feasibility study applying the boiling model was conducted to analyze the multiphase-thermal flow in the pipe considering the phase change. Two types of boiling models were employed and compared to implement the subcooled boiling phenomenon in nucleate boiling numerically. One was the "Rohsenow boiling model", which is the most commonly used one among the VOF (Volume-of-Fluid) boiling models under the Eulerian-Eulerian framework. The other was the "wall boiling model", which is suitable for nucleate boiling among the Eulerian multiphase models. Moreover, a comparative study was conducted by combining the nucleate site density and bubble departure diameter model that could influence the accuracy of the wall boiling model. A comparison of the Rohsenow boiling and the wall boiling models showed that the wall boiling model relatively well represented the process of bubble formation and development, even though more computation time was consumed. Among the combination of models used in the wall boiling model, the simulation results were affected significantly by the bubble departure diameter model, which had a very close relationship with the grid size. The present results are expected to provide useful information for identifying the characteristics of various parameters of the boiling model used in CFD simulations of multiphase-thermalflow, including phase change and selecting the appropriate parameters.

The Effect of Gap Size on Counter Current Flow Limitation Phenomena in Narrow Annular Gaps with Large Diameter

  • Jeong, Ji-Hwan;Lee, Seung-Jin;Park, Rae-Joon;Kim, Sang-Baek
    • Nuclear Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.396-405
    • /
    • 2002
  • An experimental study on counter-current flow limitation phenomena in narrow annular passages was carried out The gap sizes tested were 1, 2 and 3 mm. This is very small compared with the outer diameter of the annular passage, 500 mm. It was visually observed that a CCFL might occur in some part of the periphery while the other part is remained in a counter current flow pattern. That is, non-uniform behaviour of fluids due 4o a 2-dimensional effect appear in a large diameter facility. Because of this non-uniformity, a CCFL is defined in the present work as the situation where net water accumulation is sustained. That is, some amount of water should not be allowed to penetrate the gap and accumulate over the gap at CCFL criterion. The measured data are presented in the form of Wallis'type correlation with characteristic length of gap size. It was found that the present correlation is in good agreement with other empirical correlation based on measurements whose test section diameter is close and the gap size is much larger than that of the present test section.

R407C의 온도구배와 과열도가 증발기 성능에 미치는 영향 (Effects of the Temperature Glide and Superheat of R407C on the Performance of Evaporator)

  • 김창덕;전창덕;이진호
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.852-859
    • /
    • 2003
  • R407C is considered as an alternative refrigerant of R22 for air conditioners. An experiment was carried out to investigate the characteristics of the evaporation heat transfer and pressure drop for refrigerant R407C flowing in a fin-and-tube heat exchanger used for commercial air-conditioning unit. The experimental data were useful in analyze the effects of the temperature glide and superheat for R407C. Test were conducted at the conditions of inlet refrigerant evaporation temperature of 7$^{\circ}C$, inlet air relative humidity of 50%, and refrigerant mass fluxes varying from 150 to 250 kg/m$^2$s. Representative results show that the heat exchanger performance for R407C evaporation is significantly affected by the change of the flow pattern from two-phase to super-heated vapor flow.

Numerical study of wake structure behind a square cylinder at high Reynolds number

  • Lee, Sungsu
    • Wind and Structures
    • /
    • 제1권2호
    • /
    • pp.127-144
    • /
    • 1998
  • In this paper, the wake structures behind a square cylinder at the Reynolds number of 22,000 are simulated using the large eddy simulation, and the main features of the wake structure associated with unsteady vortex-shedding are investigated. The Smagorinsky model is used for parametrization of the subgrid scales. The finite element method with isoparametric linear elements is employed in the computations. Unsteady computations are performed using the explicit method with streamline upwind scheme for the advection term. The time integration incorporates a subcycling strategy. No-slip condition is enforced on the wall surface. A comparative study between two-and three-dimensional computations puts a stress on the three-dimensional effects in turbulent flow simulations. Simulated three-dimensional wake structures are compared with numerical and experimental results reported by other researchers. The results include time-averaged, phase-averaged flow fields and numerically visualized vortex-shedding pattern using streaklines. The results show that dynamics of the vortex-shedding phenomenon are numerically well reproduced using the present method of finite element implementation of large eddy simulation.

Numerical simulation of air layer morphology on flat bottom plate with air cavity and evaluation of the drag reduction effect

  • Hao, W.U.;Yongpeng, O.U.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.510-520
    • /
    • 2019
  • To investigate the morphology characteristics of air layer in the air cavity, a numerical method with the combination of RANS equations and VOF two-phase-flow model is proposed for a plate with air cavity. Based on the model above, the dynamic and developmental process of air layer in the air cavity is studied. Numerical results indicate that the air layer in the plate's air cavity exhibits the dynamic state of morphology and the wavelength of air layer becomes larger with the increasing speed. The morphology of air layer agrees with the Froude similarity law and the formation of the air layer is not affected by the parameters of the cavity, however, the wave pattern of the air layer is influenced by the parameters of the cavity. The stable air layer under the air cavity is important for the resistance reduction for the air layer drag reduction.

다른 세장비의 사각 마이크로채널 내의 기포 거동에 관한 연구 (Investigation of Bubble Behavior in Rectangular Microchannels for Different Aspect Ratios)

  • 최치웅;유동인;김무환
    • 대한기계학회논문집B
    • /
    • 제34권5호
    • /
    • pp.471-479
    • /
    • 2010
  • 다른 세장비에 따른 단일 사각 마이크로 채널 내의 이상유동연구를 수행하였다. 본 연구에서는 대략 넓이가 $500\;{\mu}m$ 이며 수력직경이 각각 490, 322, $143\;{\mu}m$ 인 사각 마이크로채널 내에서의 물-질소 유동에 대한 실험이 수행되었다. 또한, 고속카메라와 장거리 현미경을 통해 이상유동양식을 가시화하였다. 본 연구는 이상유동 중 기포류에 중점을 두었으며 가시화 결과를 통해 기포의 속도, 기포의 길이, 관 내 기포의 개수, 기공률을 산출하였고 단위 셀 모델을 기반으로 늘어진 단일 기포의 압력강하를 해석하였다. 실험을 통해 기포의 속도, 기공률, 단일 기포의 압력강하가 각각 겉보기 속도와 체적건도, 세장비와 연관이 있음을 확인하였으며, 사각 마이크로 채널 내 늘어진 단일 기포의 압력강하에 대한 상관식을 개발하였다.

Development of Dual Beam High Speed Doppler OFDI

  • Kim, SunHee;Park, TaeJin;Oh, Wang-Yuhl
    • 비파괴검사학회지
    • /
    • 제33권3호
    • /
    • pp.283-288
    • /
    • 2013
  • This paper describes development of a high speed Doppler OFDI system for non-invasive vascular imaging. Doppler OFDI (optical frequency domain imaging) is one of the phase-resolved second generation OCT (optical coherence tomography) techniques for high resolution imaging of moving elements in biological tissues. To achieve a phase-resolved imaging, two temporally separated measurements are required. In a conventional Doppler OCT, a pair of massively oversampled successive A-lines is used to minimize de-correlation noise at the expense of significant imaging speed reduction. To minimize a de-correlation noise between targeted two measurements without suffering from significant imaging speed reduction, several methods have been developed such as an optimized scanning pattern and polarization multiplexed dual beam scanning. This research represent novel imaging technique using frequency multiplexed dual beam illumination to measure exactly same position with aimed time interval. Developed system has been verified using a tissue phantom and mouse vessel imaging.

알루미늄합금의 반용융 단조 및 주조공정에 관한 수치해석 (Numerical Analysis on Semi-Solid Forging and Casting Process of Aluminum Alloys)

  • 강충길;임미동
    • 소성∙가공
    • /
    • 제6권3호
    • /
    • pp.239-249
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can vary from dendritic to globular. To optimal net shape forging of semi-solid materials, it is important to investigate for filling phenomena in forging process of arbitrarily shaped dies. To produce a automotive part which has good mechanical property, the filling pattern according to die velocity and solid fraction distribution has to be estimated for arbitrarily shaped dies. Therefore, the estimation of filling characteristic in the forging simulation with arbitrarily shaped dies of semi-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for arbitrarily shaped dies is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process with arbitrarily shaped dies is performed to the isothermal conditions of two dimensional problems. To analysis of forging process by using semi-solid materials, a new stress-strain relationship is described, and forging analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for forging force and filling limitations will be compared to experimental data. The filling simulation of simple products performed with the uniform billet temperature(584$^{\circ}C$) from the induction heating by the commercial package MAGMAsoft. The initial step of computation is the touching of semi-solid material with the end of die gate and the initial concept of proposed system just fit with the capability of MAGMAsoft.

  • PDF

2유체 분무노즐의 분열특성(I)-액주분열 및 내부유동- (Breakup Characteristics in Plain Jet Air Blast Atomizer(I)-Jet Breakup and Internal Flow-)

  • 김혁주;이충원
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.1009-1023
    • /
    • 1997
  • The breakup length of a liquid jet with flowrate, formed by releasing through a nozzle of circular cross-section into the atmosphere, was experimented and studied for 3 liquid nozzles of varying diameters. The experimental result was analyzed using the existing theoretical equation for predicting the breakup length. It was found that the breakup length of liquid jet depends on the velocity, and the breakup length increases with increasing of the liquid nozzle diameter. Also, the variation range of the breakup length for the same flowrate of liquid increased rapidly as velocity was increased for laminar flow, but in the turbulent flow region, it leveled off in the range of approximately 0.55-0.7 of the mean breakup length. Furthermore, when the longest smooth liquid jet was applied to the co-axial flow air blast atomizer, the effect of air flow on the flow pattern and breakup length was studied for 6 glass nozzles of different lengths and diameters. It was found that depending on the diameter of the mixing tube and liquid jet, it was possible to observe a wide range of flow patterns, such as liquid jet through flow, partial annular flow and annular flow. The liquid jet breakup length was more sensitive to the change in the length rather than the diameter of the mixing tube. As the length of the mixing tube shortens, the breakup length also shortens rapidly.