• Title/Summary/Keyword: Two-phase Flow Model

Search Result 562, Processing Time 0.031 seconds

Flow Characteristics in a Centrifugal Pump with Two-Phase Flow (원심펌프 기-액 2상유동 특성에 관한 연구)

  • Lee, Jong-C.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.568-573
    • /
    • 2000
  • In this study, experimental and numerical analyses are carried out to investigate the performance of centrifugal pump with various air admitting conditions. Experiments on pump performance under air-water two-phase flow n accomplished using a centrifugal pump with semi-open type impeller having three, five and seven blades, respectively. Also, the numerical analysis of turbulent air-water two-phase flow using finite volume method has been carried out to obtain the pressure, velocities and void fraction on the basis of a so-called bubbly flow model with the constant size and shape of cavity. The results obtained through this study show the reasonable agreements within the range of bubbly flow regime. There are promising developments concerning application of the present study for the flow in a centrifugal pump with two-phase flow conditions and efforts must be followed to improve the turbulence model and two-phase flow model for turbomachinery.

  • PDF

A Study on the Performance of a Centrifugal Pump with Two-Phase Flow (기-액 2상유동에 따른 원심펌프 성능변화에 대한 연구)

  • Lee, Jong C.;Kim, Youn J.;Kim, C.-S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.12-18
    • /
    • 2000
  • In this study, experimental and numerical analyses are carried out to investigate the performance of centrifugal pump with various air admitting conditions. Experiments on the pump performance under air-water two-phase flow are accomplished using a centrifugal pump with semi-open type impeller having three, five and seven blades, respectively. Also, the numerical analysis of turbulent air-water two-phase flow using the finite volume method has been carried out to obtain the pressure, velocities and void fraction on the basis of a so-called bubbly flow model with the constant size and shape of cavity. The results obtained through this study show the reasonable agreements within the range of bubbly flow regime. There are promising developments concerning application of the present study for the flow in a centrifugal pump with two-phase flow conditions and efforts must be followed to improve the turbulence model and two-phase flow model for turbomachinery.

  • PDF

Experimental Validation of Two Simulation Models for Two-Phase Loop Thermosyphons

  • Rhi, Seok-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.159-169
    • /
    • 2003
  • Five two-phase closed loop thermosyphons (TLTs) specially designed and constructed for the present study are one small scale loop, two medium scale loops (MSLI and MSLII) and two large scale loops (LSLI and LSLII). Two simulation models based on thermal resistance network, lumped and sectorial, are presented. In the Lumped model, the evaporator section is dealt as one lumped boiling section. Whereas, in the Sectorial model, all possible phenomena which would occur in the evaporator section due to the two-phase boiling process are considered in detail. Flow regimes, the flow transitions between flow regimes and other two-phase parameters involved in two-phase flows are carefully analyzed. In the present study, the results of two different simulation models are compared with experimental results. The comparisons showed that the simulation results by the Lumped model and by the Sectorial model did not show any partiality for the model used for the simulation. The simulation results according to the correlations show the various results in the large different range.

A Novel Approach for Well-Test Analysis of Volatile Oil Reservoirs in Two-Phase Flow Conditions

  • Baniasadi, Hamid;Rashidi, Fariborz
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.883-890
    • /
    • 2019
  • Two-phase flow near the wellbore in volatile oil reservoirs causes complications in well test analysis. In this study, the flow behavior of volatile oil reservoirs below the bubble-point pressure and the potential of radial composite model for interpretation of two-phase well test in volatile oil reservoirs was investigated. A radial composite model was used for two-phase well test analysis. A new procedure was developed to interpret well test data and estimate the radius of the two-phase region. The changes in fluid composition near the wellbore during drawdown test were found to increase the saturation pressure, which affects the saturation profile during build-up. Well test results showed that the radial composite method is a powerful tool for well test characterization and estimation of reservoir parameters. The proposed procedure was able to estimate the reservoir parameters and radius of the two-phase region with acceptable accuracy.

Development of a one-dimensional system code for the analysis of downward air-water two-phase flow in large vertical pipes

  • Donkoan Hwang;Soon Ho Kang;Nakjun Choi;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.19-33
    • /
    • 2024
  • In nuclear thermal-hydraulic system codes, most correlations used for vertical pipes, under downward two-phase flow, have been developed considering small pipes or pool systems. This suggests that there could be uncertainties in applying the correlations to accident scenarios involving large vertical pipes owing to the difference in the characteristics of two-phase flows, or flow conditions, between large and small pipes. In this study, we modified the Multi-dimensional Analysis of Reactor Safety KINS Standard (MARS-KS) code using correlations, such as the drift-flux model and two-phase multiplier, developed in a plant-scale air-inflow experiment conducted for a pipe of diameter 600 mm under downward two-phase flow. The results were then analyzed and compared with those based on previous correlations developed for small pipes and pool conditions. The modified code indicated a good estimation performance in two plant-scale experiments with large pipes. For the siphon-breaking experiment, the maximum errors in water flow for modified and original codes were 2.2% and 30.3%, respectively. For the air-inflow accident experiment, the original code could not predict the trend of frictional pressure gradient in two-phase flow as / increased, while the modified MARS-KS code showed a good estimation performance of the gradient with maximum error of 3.5%.

Two-phase Pressure Drop in Horizontal Rectangular Channel (수평 사각 채널에서의 상 압력 강하)

  • Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Seong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.3
    • /
    • pp.625-631
    • /
    • 2013
  • Two-phase pressure drop experiments were performed during flow boiling to deionized water in a microchannel having a hydraulic diameter of $500{\mu}m$. Tests were made in the ranges of heat fluxes from 100 to $400kW/m^2$, vapor qualities from 0 to 0.2 and mass fluxes of 200, 400 and $600kg/m^2s$. The frictional pressure drop during flow boiling is predicted by using two models; the homogeneous model that assumes equal phase velocity and the separate flow model that allows a slip velocity between two phases. From the experimental results, it is found that the two phase multiplier decreases with an increase in mass flux. Measured data of pressure drop are compared to a few available correlations proposed for macroscale and mini/microscale. Among the separated flow models, the correlation model suggested by Lee and Garimella predicted the frictional pressure drop within MAE of 47.2%, which is better than other correlations.

Cavitating Flow Simulation Using Two-Fluid Two-Phase Flow Model and HLL Scheme (이유체 이상유동 모델과 HLL 스킴을 이용한 캐비테이션 유동 해석)

  • Yeom Geum-Su;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.219-222
    • /
    • 2005
  • A compressible two-fluid two-phase flow computation model using the stiffened-gas equation of state is formulated. Since the conservation equation system is of mixed type, it gives complex eigenvalues. The sonic speeds obtained from the individual single phase have been simply used in the literature for the fastest wave speeds necessary in the HLL scheme. This method has worked fine but proved to be quite diffusive according to our test. To improve the accuracy, we here propose to utilize the analytic eigenvalues evaluated from an approximate Jacobian matrix lot the fastest wave speeds. The interfacial transfer terms were dropped in constituting the Jacobian matrix for this purpose. The present scheme proved efficient, robust and accurate in comparison with other existing methods. We solved the cavitating flow problem using the present scheme. The result shows more detailed wave structure in the cavitating process caused by the strong expansion waves.

  • PDF

Two-Phase Flow through a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.1
    • /
    • pp.28-39
    • /
    • 2006
  • Two-phase flow through a T-junction has been studied by numerous researchers so far. The dividing characteristics of the gas and liquid phases at the T-junction are very complicated due to a lot of related variables. The prediction models have been suggested by using experimental data for a specific condition or working fluid. But, they showed the application limitation for the most of the other conditions or fluids. Since most of them are applicable for their own experimental range, the generalized model for the wide range of conditions and fluids is needed. Even though it's not available now, some of the models developed for air-water flow at a T-junction might be applicable for the part of refrigerants with some modifications. Especially, for the two-phase flow of refrigerants at the T-junction, very few studies have been performed. Further experimental study is required to be performed for the wide range of test conditions and fluids to predict properly the two-phase flow distribution and phase separation through the T-junction.

Effect of Flow Direction on Two-Phase Flow Distribution of Refrigerants at a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.717-727
    • /
    • 2006
  • The present study experimentally investigated the effect of flow direction and other flow parameters on two-phase flow distribution of refrigerants at a T-junction, and also suggested a prediction model for refrigerant in a T-junction by modifying previous model for air-water flow. R-22, R-134a, and R-410A were used as test refrigerants. As geometric parameters, the direction of the inlet or branch tube and the tube diameter ratio of branch to inlet tube were chosen. The measured data were compared with the values predicted by the models developed for air-water or steam-water mixture in the literature. We propose a modified model for application to the reduced T-junction and vertical tube orientation. Among the geometric parameters, the branch tube direction showed the biggest sensitivity to the mass flow rate ratio for the gas phase, while the inlet quality showed the biggest sensitivity to the mass flow rate ratio among the inlet flow parameters.