• Title/Summary/Keyword: Two-loop controller

Search Result 294, Processing Time 0.027 seconds

An Study on the Improved Modeling and Double Loop Controller Design for Three-Level Boost Converter (Three-Level Boost Converter의 개선된 모델링 및 더블 루프 제어기 설계에 관한 연구)

  • Lee, Kyu-Min;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.442-450
    • /
    • 2020
  • A small-signal modeling approach for a three-level boost (TLB) converter and a design methodology for a double-loop controller are proposed in this study. Conventional modeling of TLB converters involves three state variables. Moreover, TLB converters have two operation modes depending on the duty ratio. Consequently, complex mathematical calculations are required for controller design. This study proposes a simple system modeling method that uses two state variables, unlike previous methods that require three state variables. Analysis shows that the transfer functions of the two operation modes can be expressed as identical equations. This condition means that the linear feedback controller can be applied to all operational ranges, that is, for full duty ratios. The design method for a double-loop controller using a PI controller is presented in step-by-step sequences. Simulation and experimental verifications are conducted to verify the effectiveness of the small-signal analysis and control system design.

The Design of Loop-shaping Two-degree-of-freedom H_{\infty} Digital Controller for Sampled-data System (샘플치 시스템의 루프정형 2자유도 H_{\infty}디지털 제어기 설계)

  • Lee, Sang-Cheol;Park, Jong-U;Jo, Do-Hyeon;Lee, Jong-Yong;Lee, Sang-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.9
    • /
    • pp.495-503
    • /
    • 2000
  • In this paper we propose a design procedure of loop-shaping two-degree-of-freedom H$\infty$ digital controller for sampled-data system. We extend the continuous time loop-shaping two-degree-of-freedom H$\infty$ control problem to sampled-data system. The configuration of generalized plant is modified for sampled-data system. And then using continuous lifting we obtain the digital controller. In the final stage of loop-shaping procedure the problem of absorbing weighting functions is discussed. We summarize this study to the design procedure and illustrate the application for an inverted pendulum on the cart.

  • PDF

Fuzzy Modeling and Control of Wheeled Mobile Robot

  • Kang, Jin-Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 2003
  • In this paper, a new model, which is a Takagi-Sugeno fuzzy model, for mobile robot is presented. A controller, consisting of two loops the one of which is the inner state feedback loop designed for stability and the outer loop is a PI controller designed for tracking the reference input, is suggested. Because the robot dynamics is nonlinear, it requires the controller to be insensitive to the nonlinear term. To achieve this objective, the model is developed by well known T-S fuzzy model. The design algorithm of inner state-feedback loop is regional pole-placement. In this paper, regions, for which poles of the inner state feedback loop are lie in, are formulated by LMI's. By solving these LMI's, we can obtain the state feedback gains for T-S fuzzy system. And this paper shows that the PI controller is equivalent to the state feedback and the cost function for reference tracking is equivalent to the LQ(linear quadratic) cost. By using these properties, it is also shown in this paper that the PI controller can be obtained by solving the LQ problem.

Design of a Robust Controller Using Disturbance Rejection Controller (외란 제거 제어기를 이용한 강인 제어기의 설계)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.137-144
    • /
    • 2006
  • This paper proposes the design of a robust controller based on disturbance observer which is strong to variation of system parameters, uncertainty of models or external disturbance. The controller consists of a mode based compensator and a feedback controller based on two-loop structure. The compensator in the internal-loop removes internal and external disturbances and a feedback controller in the external loop achieves performance along with given specifications. As a result, it shows that the proposed robust controller can stabilize a system against disturbance and improve controlling performance.

  • PDF

Discrete controller order reduction with the closed-loop performance guaranteed (폐루프시스템의 성능을 보장하는 이산제어기 차수축소)

  • 오도창;정은태;박홍배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.24-32
    • /
    • 1997
  • This paper is on a discrete controller order reduction with the closed-loop stability and performance guaranteed. to achieve this, after finding the solutionsof two lyapunov inequalities and balancing the full order controller system, we find the reudced order controlers using the balanced truncation (BT) and the balanced singular perturbation approximation (BSPA). When the solutions of the two lyapunov inequalities exist, it is shown that the resulting controllers guarantee the closed-loop stability, and .inf.-norm error bounds are derived for the closed-loop performance region for the BT and in low frequency region for the BSPA. Finally, a numerical example is given to illustrate the validity of the proposed method.

  • PDF

Design of Robust Controller of Inverter for Single UPS (단상 UPS용 인버터의 강인제어기 설계)

  • 김제홍;김재식
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, a robust controller for UPS inverter is designed using CDM (Coefficient Diagram Method) developed by S. Manabe, by which a low order controller guaranteeing the stability and robustness is easily designed. The proposed controller consists of two control loops, the inner current control loop and the outer voltage control loop. The robustness of the proposed controller is verified through the theoretic evolution and its simulation.

  • PDF

Intelligent PID Controller Design Using Root-Locus Analysis for Systems with Parameter Uncertainties (불확실한 파라미터를 갖는 시스템을 위한 근궤적법을 이용한 지능형 PID 제어기 설계)

  • Shin, Young-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.67-76
    • /
    • 2008
  • In this research, a simple technique for designing PID controller, which guarantees robust stability for two-mass systems with parameter uncertainties as well as rigid-body behavior and zero steady-state error,is described. As well, such a PID controller is designed to mate two important frequencies, at which the given system is excited, very close so that an appropriate reference profile generated by using command shaping techniques can cover those two frequencies. Root-locus analysis. which shows traces of closed-loop poles for the given system, is used to design this PID controller. Finally, feedforward controller is added to improve tracking performance of the closed-loop system. Simulation for a system with a flexible mode and parameter uncertainties is executed to prove the feasibility of this technique.

Two-loop Hysteretic Control of $3^{rd}$ Order Buck Converter

  • Veerachary, M.;Sharma, Deepen
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.310-317
    • /
    • 2007
  • In this paper, an analysis and hysteretic controller design of a $3^{rd}$ order buck converter is presented. The proposed hysteretic controller consists of an inner current-loop, just like the conventional cascade control scheme, and an outer voltage-loop for load voltage regulation. Although it is possible to include an inner current loop from different branches of the converter, from the feasibility and operational point of view, the load side capacitor current would be the better choice. The addition of an inner current-loop improves the dynamic performance of the converter while preserving the robustness of the hysteretic control. The controller formulation and closed-loop converter performance analysis are validated through computer simulations. Few experimental results of the proposed converter are given and compared with the buck converter.

Design of Robust Double Digital Controller to Improve Performance for UPS Inverter (UPS 인버터의 성능 개선을 위한 강인한 2중 디지털 제어기의 설계)

  • 박지호;노태균;김춘삼;안인모;우정인
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.116-127
    • /
    • 2003
  • In this paper, a new fully digital control method for UPS inverter, which is based on the double control loop such as the outer voltage control loop and inner current control loop, is proposed. In the proposed control system, overshoots and oscillations due to the computation time-delay are compensated by explicit incorporation of the time-delay in the current control loop transfer function. The inner current control loop is adopted by an Internal model controller The Internal model controller is designed to a second order deadbeat reference-to-output response which means that its response reaches the reference in two sampling time including computational time-delays. The outer voltage control loop employing P-Resonance controller is proposed. The resonance controller has an infinite gain at resonant frequency, and the resonant frequency is set to the fundamental frequency of the reference voltage in this paper. Thus the outer voltage control loop causes no steady state error as regard to both magnitude and phase. The effectiveness of the proposed control system has been verified by the simulation and experimental results respectively.

A Design of PID Controller Using Loop Shaping Method of QFT (QFT의 루프형성법을 이용한 PID 제어기 설계)

  • Kim Ju-Sik;Lee Sang-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.379-384
    • /
    • 2003
  • QFT(Quantitative Feedback Theory) is a very practical design technique that emphasizes the use of feedback for achieving the desired system performance tolerances in despite of plant uncertainties and disturbances. The loop shaping procedure of the QFT method is employed to design the robust controller, until the desired bounds are satisfied. This paper presents a method to estimate the Pm parameters using the loop shaping of the QFT. The proposed method identifies the parameter vector of PID controller from a linear system that develops from rearranging the two dimensional input matrices and output vectors obtained from the QFT bounds. The feasibilities of the suggested algorithm are illustrated with an example.