• 제목/요약/키워드: Two-layer Beam

검색결과 250건 처리시간 0.031초

Fabrication of Nano Dot and Line Arrays Using NSOM Lithography

  • Kwon Sangjin;Kim Pilgyu;Jeong Sungho;Chang Wonseok;Chun Chaemin;Kim Dong-Yu
    • Journal of the Optical Society of Korea
    • /
    • 제9권1호
    • /
    • pp.16-21
    • /
    • 2005
  • Using a cantilever type nanoprobe having a 100㎚m aperture at the apex of the pyramidal tip of a near-field scanning optical microscope (NSOM), nanopatterning of polymer films are conducted. Two different types of polymer, namely a positive photoresist (DPR-i5500) and an azopolymer (Poly disperse orange-3), spincoated on a silicon wafer are used as the substrate. A He-Cd laser with a wavelength of 442㎚ is employed as the illumination source. The optical near-field produced at the tip of the nanoprobe induces a photochemical reaction on the irradiated region, leading to the fabrication of nanostructures below the diffraction limit of the laser light. By controlling the process parameters properly, nanopatterns as small as 100㎚ are produced on both the photoresist and azopolymer samples. The shape and size variations of the nanopatterns are examined with respect to the key process parameters such as laser beam power, irradiation time or scanning speed of the probe, operation modes of the NSOM (DC and AC modes), etc. The characteristic features during the fabrication of ordered structures such as dot or line arrays using NSOM lithography are investigated. Not only the direct writing of nano array structures on the polymer films but also the fabrication of NSOM-written patterns on the silicon substrate were investigated by introducing a passivation layer over the silicon surface. Possible application of thereby developed NSOM lithography technology to the fabrication of data storage is discussed.

Magnetization Reversal of Exchange-biased Bilayers and Trilayers Probed using Front and Back LT-MOKE

  • Kim, Ki-Yeon;Kim, Ji-Wan;Choi, Hyeok-Cheol;You, Chun-Yeol;Shin, Sung-Chul;Lee, Jeong-Soo
    • Journal of Magnetics
    • /
    • 제14권1호
    • /
    • pp.36-41
    • /
    • 2009
  • Magneto-optical Kerr effect (MOKE) magnetometry was used to investigate magnetization reversal dynamics in 30-nm NiFe/15-nm FeMn, 15-nm FeMn/30-nm CoFe bilayers, and 30-nm NiFe/(2,10)-nm FeMn/30-nm CoFe trilayers. The in-plane magnetization components of each ferromagnetic layer, both parallel and perpendicular to the applied field, were separately determined by measuring the longitudinal and transverse MOKE hysteresis loops from both the front and back sides of the film for an oblique incident s-polarized beam. The magnetization of the FeMn/CoFe bilayer was reversed abruptly and symmetrically through nucleation and domain wall propagation, while that of the NiFe/FeMn bilayer was reversed asymmetrically with a dominant rotation. In the NiFe/FeMn/CoFe trilayers, the magnetic reversal of the two ferromagnetic layers proceeded via nucleation and domain wall propagation for 2-nm FeMn, but via asymmetric rotation for 10-nm FeMn. The exchange-biased ferromagnetic layers showed the magnetization reversal along the same path in the film plane for the decreasing and increasing field branches from transverse MOKE hysteresis loops, which can be qualitatively explained by the theoretical model of the exchange-biased ferromagnetic/antiferromagnetic systems.

Heavy-impact sound insulation performance according to the changes of dry flooring structure in wall structure

  • Cho, Jongwoo;Lee, Hyun-Soo;Park, Moonseo;Lim, Hohwan;Kim, Jagon
    • International conference on construction engineering and project management
    • /
    • The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
    • /
    • pp.89-98
    • /
    • 2017
  • The floor heating method generally uses a wet construction method including the installation of resilient material, lightweight foam concrete, heating piping, and finishing mortar. Such a wet construction method not only delays other internal finishing processes during curing period for two mortar pouring process, but also has a disadvantage that it is difficult to replace the floor heating layer when it deteriorated because it is integrated with the frame. Dry floor heating construction method can be a good alternative in that it can solve these defects. Conversely, when it applied to the wall structure that is vulnerable to the interlayer noise compared with the column-beam structure, the question about the heavy-impact sound(HIS) insulation performance is raised. Therefore, conventional dry floor heating method is hard to apply to the wall structure apartments. Therefore, for the purpose to improve the applicability of dry floor heating method in wall structure apartments, this study investigated the change of floor impact sound, especially HIS insulation performance which is one of the required performance for the floor structure. This study tried to examine whether the change of heavy-impact sound pressure level(SPL) shows a tendency at the significant level according to the shape and mass of the floor structure. Through filed experiments on wall structure apartment, this study confirmed that the form of the raised floor shows better HIS insulation performance than the fully-supported form. In addition, it was also confirmed that the HIS insulation performance increases with the mass on the upper part. Moreover, this study found the fact that a mass of about 30 kg/m2 or more should be placed on the upper structure to reduce the heavy-impact SPL according to the bang machine measuring method. Although this study has a limit due to insufficient experiment samples, if the accuracy of this study is increased, it will contribute to the diffusion of dry floor heating by setting the HIS insulation performance target and designing the dry floor heating structure that meets the target.

  • PDF

Growth and characterization of GaAs and AlGaAs with MBE growth temperature (MBE 성장온도에 따른 GaAs 및 AlGaAs의 전기광학적 특성)

  • Seung Woong Lee;Hoon Young Cho;Eun Kyu Kim;Suk-Ki Min;Jung Ho Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제4권1호
    • /
    • pp.11-20
    • /
    • 1994
  • GaAs and AlGaAs epi-layers were grown on semi-insulating (100) GaAs substrate by molecular beam epitaxy (MBE) and their electrical and optical properties have been investigated by several measurements. In undoped GaAs, the p-type GaAs layers with the good surface morphology were obtained under the growth conditions of the substrate temperatures ranging from 570 to $585^{\circ}C$ and the $As_4$/Ga ratios from 17 to 22. In the samples with the growth rates of the ranges of $0.9~1.1 {\mu}m/h$, the impurity concentrations were in the ranges of $1.5{\times}10^{14}~5.6{\times}10^{14}cm^{-3}$ with the Hall mobilities of $590~410cm^2/V-s$. In the Si-doped GaAs, the n-type GaAs layers with low electro trap, only two hole deep levels were observed with uniform doping profiles (<1%). AlGaAs layers with good surface morphology and crystallinity were grown under an optimum condition of the substrate temperature, $600^{\circ}C $. 8 deep level defects were observed between 0.17~0.85eV in undoped AlGaAs layers.

  • PDF

Experimental Study on the Flexural Performance of Steel Beams Reinforced by AFRP Sheets (아라미드 섬유 쉬트를 이용한 철골 보 부재의 휨 보강 성능에 관한 실험적 연구)

  • Kim, Kang Seok;Nah, Hwan Seon;Kim, Kang Sik;Lee, Hyeon Ju;Lee, Kang Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제15권2호
    • /
    • pp.61-69
    • /
    • 2011
  • Fiber Reinforced Plastic (FRP) sheets have been widely used to retrofit and rehabilitate RC structures, while in case of retrofitting steel structures, there are no codes and researches. It stems from configuration of member and characteristics of bonding behavior. This study focused on the static behavior of steel beams reinforcement by AFRP sheets. The main objective of the experimental programme was the evaluation of the force transfer mechanism, the increment of the beam load carrying capacity and the bending stiffness. A bending test was conducted on a H-shaped steel beam, with aramid FRP sheets bonded to its flanges. The mid-span deflection and the strain from three points along AFRP sheets were recorded Test results exhibit that the increment of the load-carrying capacity with reference to a mid-span deflection level of 15 mm(1/125mm of the clear span) was equal to 9.4% and for the two layers case, an elastic stiffness increment is slightly higher than one layer case.

Optimal Shear Strength Enhancement using Corrugated CFRP Panel for H beam with Slender Web (세장판 복부를 갖는 H형 보의 파형 CFRP 패널을 이용한 최적 전단보강)

  • Ga-Yoon Park;Min-Hyun Seong;Jin-Kook Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제28권5호
    • /
    • pp.10-19
    • /
    • 2024
  • In this study, FEM analysis was performed with the goal of optimal design of corrugated CFRP panels reinforcing H-shaped beams with slender plate webs. The buckling reinforcement performance of corrugated CFRP panels according to various specifications was evaluated, and in particular, a new reinforcement method was proposed by analyzing the effect of the ratio of vertical reinforcement according to the net height of the abdomen of the H-type beam on the location of the first elastic buckling mode. To minimize the amount of CFRP used, the attachment angle was set to 45 degrees. Furthermore, parameter analysis was performed according to changes in the specifications of the corrugated CFRP panel, and the buckling reinforcement performance of the corrugated CFRP panel was evaluated through the ductility factor. In addition, we attempted to use the material efficiently by simultaneously considering the maximum load and ductility factor along with the volume of the corrugated CFRP panels. It was confirmed that the model with two or three-layer CFRP laminate have a high ductility factor and efficient use of materials, and that the buckling reinforcement performance is predominantly affected by the length and height of the corrugated CFRP panel rather than the width.

Splitting of Surface Plasmon Resonance Peaks Under TE- and TM-polarized Illumination

  • Yoon, Su-Jin;Hwang, Jeongwoo;Lee, Myeong-Ju;Kang, Sang-Woo;Kim, Jong-Su;Ku, Zahyun;Urbas, Augustine;Lee, Sang Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.296-296
    • /
    • 2014
  • We investigate experimentally and theoretically the splitting of surface plasmon (SP) resonance peaks under TE- and TM-polarized illumination. The SP structure at infrared wavelength is fabricated with a 2-dimensional square periodic array of circular holes penetrating through Au (gold) film. In brief, the processing steps to fabricate the SP structure are as follows. (i) A standard optical lithography was performed to produce to a periodic array of photoresist (PR) circular cylinders. (ii) After the PR pattern, e-beam evaporation was used to deposit a 50-nm thick layer of Au. (iii) A lift-off processing with acetone to remove the PR layer, leading to final structure (pitch, $p=2.2{\mu}m$; aperture size, $d=1.1{\mu}m$) as shown in Fig. 1(a). The transmission is measured using a Nicolet Fourier-transform infrared spectroscopy (FTIR) at the incident angle from $0^{\circ}$ to $36^{\circ}$ with a step of $4^{\circ}$ both in TE and TM polarization. Measured first and second order SP resonances at interface between Au and GaAs exhibit the splitting into two branches under TM-polarized light as shown in Fig. 1(b). However, as the incidence angle under TE polarization is increased, the $1^{st}$ order SP resonance peak blue-shifts slightly while the splitting of $2^{nd}$ order SP resonance peak tends to be larger (not shown here). For the purpose of understanding our experimental results qualitatively, SP resonance peak wavelengths can be calculated from momentum matching condition (black circle depicted in Fig. 2(b)), $k_{sp}=k_{\parallel}{\pm}iG_x{\pm}jG_y$, where $k_{sp}$ is the SP wavevector, $k_{\parallel}$ is the in-plane component of incident light wavevector, i and j are SP coupling order, and G is the grating momentum wavevector. Moreover, for better understanding we performed 3D full field electromagnetic simulations of SP structure using a finite integration technique (CST Microwave Studio). Fig. 1(b) shows an excellent agreement between the experimental, calculated and CST-simulated splitting of SP resonance peaks with various incidence angles under TM-polarized illumination (TE results are not shown here). The simulated z-component electric field (Ez) distribution at incident angle, $4^{\circ}$ and $16^{\circ}$ under TM polarization and at the corresponding SP resonance wavelength is shown in Fig. 1(c). The analysis and comparison of theoretical results with experiment indicates a good agreement of the splitting behavior of the surface plasmon resonance modes at oblique incidence both in TE and TM polarization.

  • PDF

Enhancement of Exchange Coupling Field and Thermal Stability by an Ultra-thin Mn Inserted layer on NiFe/[FeMn/Mn]80/NiFe Multilayers (NiFe/[FeMn/Mn]80/NiFe 다층박막에서 극-초박막 Mn 삽입에 의한 교환결합세기와 열적 안정성 향상)

  • Kim, Bo-Kyung;Lee, Jin-Yong;Ham, Sang-Hee;Lee, Sang-Suk;Hwang, Do-Guwn
    • Journal of the Korean Magnetics Society
    • /
    • 제13권2호
    • /
    • pp.53-58
    • /
    • 2003
  • Annealing effects of exchange bias fields ($H_{2ex}$(top), $H_{lex}$ (bottom)) on composite type NiFe/[FeMn/Mn]$_{80}$/NiFe multilayers have been studied. Three samples with ultra-thin Mn inserted layers on glass/Ta(50 $\AA$)/NiFe(150 $\AA$)/[F $e_{53}$M $n_{47}$(1.25 $\AA$)/Mn(0 $\AA$, 0.11 $\AA$, 0.3 $\AA$)]$_{80}$/NiFe(90 $\AA$)/Ta(50 $\AA$) were prepared by ion beam sputtering. The average x-ray diffraction peak ratios NiFe(111) of FeMn (111) fcc textures for the Mn inserted total thicknesses of 0 $\AA$, 9 $\AA$, and 24 $\AA$ were about 0.65, 0.90, and 1.5, respectively. For the sample without Mn inserted layer, the $H_{2ex}$ of 260 Oe up to 300 $^{\circ}C$ disappeared at 350 $^{\circ}C$. For two multilayer samples with ultra-thin Mn layers of 0.11 $\AA$ and 0.3 $\AA$, the $H_{2exs}$ of 310 Oe and 180 Oe up to 300 $^{\circ}C$ endured of 215 Oe and 180 Oe at 350 $^{\circ}C$, respectively. The $H_{ex}$ (bottom)s of three samples decreased from 100 Oe to 70 Oe up to 250 $^{\circ}C$, while these values increased beyond 300 $^{\circ}C$. This observation can be attributed to less diffusive path of Mn atoms in bottom NiFe than top NiFe layer. The top and bottom coercive fields slightly varied about 5 Oe∼10 Oe. From these results, we could obtain the enhancement of exchange coupling intensity and thermal stability by an ultra-thin Mn inserted layer on NiFe/[FeMn/Mn]$_{80}$/NiFe Multilayers.

The Forced Motion Analyses by Using Two Dimensional 6-Node and Three Dimensional 16-Node Isoparametric Elements with Modification of Gauss Sampling Point (6절점 2차원 및 16절점 3차원 등매개변수 요소의 가우스 적분점 수정을 이용한 강제진동 해석)

  • 김정운;권영두
    • Computational Structural Engineering
    • /
    • 제8권4호
    • /
    • pp.87-97
    • /
    • 1995
  • For the same configuration of two-dimensional finite element models, 6-node element exhibits stiffer bending stiffness than 8-node element. This is true in the relation between 16-node element and 20-node element for three-dimensional model. This stiffening phenomenon comes from the elimination of several mid nodes from full-node elements. Therefore, this may be called 'relative stiffness stiffening phenomenon'. It seems that there are a couple of ways to correct the stiffening effect, however, we could find only one effective method-the method of modification of Gauss sampling points-which passes the patch test and does not alter other kinds of stiffness, such as extensional stiffness. The quantity of modification is a function of Poisson's ratios of the constituent materials. We could obtain two modification equations, one for plane stress case and the other for plane strain case. This method can be extended to 3-dimensional solid elements. Except the exact plane strain cases, most 3-dimensional plates could be modeled successfully with 16-node element modified by the equation for the plane stress case. The effectiveness of the modification method is checked by applying it to several examples with excellent improvements. In numerical examples, beams with various boundary conditions are subjected to static and time-dependent loads. Free and forced motion analyses of beams and plates are also tested. The beam and plate may be composed of isotropic multilayers as well as a single layer.

  • PDF

Color Filter Based on a Sub-wavelength Patterned Metal Grating (광파장 이하 주기를 갖는 금속 격자형 컬러필터)

  • Lee, Hong-Shik;Yoon, Yeo-Taek;Lee, Sang-Shin;Kim, Sang-Hoon;Lee, Ki-Dong
    • Korean Journal of Optics and Photonics
    • /
    • 제18권6호
    • /
    • pp.383-388
    • /
    • 2007
  • A color filter was demonstrated incorporating a patterned metal grating in a quartz substrate. The filter is created in a metal layer perforated with a symmetric two-dimensional array of circular holes, with the pitch smaller than the wavelength of the visible light. A finite-difference time-domain simulation was performed to analyze the device by investigating the effect of structural parameters like the grating height, the period, the hole size, and the refractive index of the hole-filling material on its performance. The device performance was especially optimized by controlling the refractive index of the material comprising the holes of the grating. And two different devices were fabricated by means of the e-beam direct writing with the following design parameters: the grating height of 50 nm, the two pitches of 340 nm for the red color and 260 nm for the green color. For the prepared device with the period of 340 nm, the center wavelength was 680 nm and the peak transmission 57%. And for the other device with the pitch of 260 nm, the center wavelength was 550 nm and the peak transmission was 50%. The filling of the hole with a material whose refractive index is matched to that of the substrate has led to an increase of ${\sim}15%$ in the transmission efficiency.