Browse > Article
http://dx.doi.org/10.4283/JKMS.2003.13.2.053

Enhancement of Exchange Coupling Field and Thermal Stability by an Ultra-thin Mn Inserted layer on NiFe/[FeMn/Mn]80/NiFe Multilayers  

Kim, Bo-Kyung (컴퓨터전자물리학과 상지대학교)
Lee, Jin-Yong (컴퓨터전자물리학과 상지대학교)
Ham, Sang-Hee (컴퓨터전자물리학과 상지대학교)
Lee, Sang-Suk (컴퓨터전자물리학과 상지대학교)
Hwang, Do-Guwn (컴퓨터전자물리학과 상지대학교)
Abstract
Annealing effects of exchange bias fields ($H_{2ex}$(top), $H_{lex}$ (bottom)) on composite type NiFe/[FeMn/Mn]$_{80}$/NiFe multilayers have been studied. Three samples with ultra-thin Mn inserted layers on glass/Ta(50 $\AA$)/NiFe(150 $\AA$)/[F $e_{53}$M $n_{47}$(1.25 $\AA$)/Mn(0 $\AA$, 0.11 $\AA$, 0.3 $\AA$)]$_{80}$/NiFe(90 $\AA$)/Ta(50 $\AA$) were prepared by ion beam sputtering. The average x-ray diffraction peak ratios NiFe(111) of FeMn (111) fcc textures for the Mn inserted total thicknesses of 0 $\AA$, 9 $\AA$, and 24 $\AA$ were about 0.65, 0.90, and 1.5, respectively. For the sample without Mn inserted layer, the $H_{2ex}$ of 260 Oe up to 300 $^{\circ}C$ disappeared at 350 $^{\circ}C$. For two multilayer samples with ultra-thin Mn layers of 0.11 $\AA$ and 0.3 $\AA$, the $H_{2exs}$ of 310 Oe and 180 Oe up to 300 $^{\circ}C$ endured of 215 Oe and 180 Oe at 350 $^{\circ}C$, respectively. The $H_{ex}$ (bottom)s of three samples decreased from 100 Oe to 70 Oe up to 250 $^{\circ}C$, while these values increased beyond 300 $^{\circ}C$. This observation can be attributed to less diffusive path of Mn atoms in bottom NiFe than top NiFe layer. The top and bottom coercive fields slightly varied about 5 Oe∼10 Oe. From these results, we could obtain the enhancement of exchange coupling intensity and thermal stability by an ultra-thin Mn inserted layer on NiFe/[FeMn/Mn]$_{80}$/NiFe Multilayers.
Keywords
NiFe/[FeMn/Mn]$_{80}$ /NiFe multilayers; Mn inserted layer; exchange coupling field; thermal stability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 /
[ M.Takiguchi;E.Nakino;A.Okabe ] / J.Appl.Phys   DOI   ScienceOn
2 /
[ B.K.Kim;J.H.Kim;D.G.Hwang;S.S.Lee; ] / J.Kor.Mag.Soc   DOI   ScienceOn
3 /
[ S.W.Kim;J.H.Kim;B.K,Kim;J.K.Kim;J.R.Rhee;S.S.Lee;D.G.Hwang ] / J.Appl.Phys
4 /
[ M.J.Kim;H.J.Kim;K.Y.Kim;S.H.Jang;T.Kang ] / J.Mag.Mag.Mater   DOI   ScienceOn
5 /
[ O.Kitakami;S.Okamoto;Y.Shimada ] / J.Appl.Phys   DOI   ScienceOn
6 /
[ H.R.Kaufman;J.J.Cuomo;J.M.E.Harper ] / J.Vac.Sci.Tech   DOI
7 /
[ M.Takiguchi;E.Nakino;A.Okabe ] / J.Appl.Phys   DOI   ScienceOn
8 /
[ R.Nakatani;M.Hoshino;S.Noguchi;Y.Suguta ] / Jpn.J.Appl.Phys
9 /
[ J.H.Lee;H.D.Jeong;C.S.Yoon;C.K.Kim;B.G.Park;T.D.Lee ] / J.Appl.Phys
10 /
[ S.S.Lee;D.G.Hwnag;C.M.Park ] / J.Mag.Mag.Mater   DOI   ScienceOn
11 /
[ S.Nakagawa;K.Nishimura;Y.Shimizu;M.Naoe ] / IEEE Trans.On Magn   DOI   ScienceOn
12 /
[ H.D.Jeong;J.H.Lee;C.S.Yoon;C.K.Kim;J.H.Yuo ] / Appl.Surf.Sci
13 /
[ J.H.Lee;S.J.Kim;C.S.Yoon;C.K.Kim;B.G.Park;T.D.Lee ] / J.Appl.Phys   DOI   ScienceOn