DOI QR코드

DOI QR Code

Magnetization Reversal of Exchange-biased Bilayers and Trilayers Probed using Front and Back LT-MOKE

  • Kim, Ki-Yeon (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Kim, Ji-Wan (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Choi, Hyeok-Cheol (Department of Physics, Inha University) ;
  • You, Chun-Yeol (Department of Physics, Inha University) ;
  • Shin, Sung-Chul (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jeong-Soo (Neutron Science Division, Korea Atomic Energy Research Institute)
  • Published : 2009.03.31

Abstract

Magneto-optical Kerr effect (MOKE) magnetometry was used to investigate magnetization reversal dynamics in 30-nm NiFe/15-nm FeMn, 15-nm FeMn/30-nm CoFe bilayers, and 30-nm NiFe/(2,10)-nm FeMn/30-nm CoFe trilayers. The in-plane magnetization components of each ferromagnetic layer, both parallel and perpendicular to the applied field, were separately determined by measuring the longitudinal and transverse MOKE hysteresis loops from both the front and back sides of the film for an oblique incident s-polarized beam. The magnetization of the FeMn/CoFe bilayer was reversed abruptly and symmetrically through nucleation and domain wall propagation, while that of the NiFe/FeMn bilayer was reversed asymmetrically with a dominant rotation. In the NiFe/FeMn/CoFe trilayers, the magnetic reversal of the two ferromagnetic layers proceeded via nucleation and domain wall propagation for 2-nm FeMn, but via asymmetric rotation for 10-nm FeMn. The exchange-biased ferromagnetic layers showed the magnetization reversal along the same path in the film plane for the decreasing and increasing field branches from transverse MOKE hysteresis loops, which can be qualitatively explained by the theoretical model of the exchange-biased ferromagnetic/antiferromagnetic systems.

Keywords

References

  1. Chun-Yeol You and Sung-Chul Shin, J. Appl. Phys. 84,541 (1998). https://doi.org/10.1063/1.368058
  2. C. Daboo, J. A. C. Bland, R. J. Hicken, A. J. R. Ives, M. J. Baird, and M. J. Walker, Phys. Rev. B 47, 11852(1993) https://doi.org/10.1103/PhysRevB.47.11852
  3. Z. Y. Liu and S. Adenwalla, J. Appl. Phys. 93, 3422 (2003). https://doi.org/10.1063/1.1554760
  4. Florin Radu, Andreas Westphalen, Katharina Theis-Brohl, and Hartmut Zabel, J. Phys.: Condens. Matter 18, L29(2006). https://doi.org/10.1088/0953-8984/18/3/L01
  5. J. Nogues and I. K. Shuller, J. Magn. Magn. Mater. 192, 203 (1999). https://doi.org/10.1016/S0304-8853(98)00266-2
  6. J. Bass, A. Sharma, Z. Wei, and M. Tsoi, J. Magnetics 13, 1 (2008) https://doi.org/10.4283/JMAG.2008.13.1.001
  7. I. N. Krivorotov, C. Leighton, J. Nogues, Ivan K. Schuller, and E. Dan Dahlberg, Phys. Rev. B 65, 100402-1 (2002). https://doi.org/10.1103/PhysRevB.65.100402
  8. F. Radu, M. Etzkorn, T. Schmitte, R. Siebrecht, A. Schreyer, K. Westerholt, and H. Zabel, J. Magn. Magn. Mater. 240, 251 (2002). https://doi.org/10.1016/S0304-8853(01)00815-0
  9. Z.-P. Li, O. Petracic, R. Morales, J. Olamit, X. Batlle, K. Liu, and I. K. Schuller, Phy. Rev. Lett. 96, 217205-1(2006). https://doi.org/10.1103/PhysRevLett.96.217205
  10. E. Girgis, R. D. Portugal, H. Loosvelt, M. J. Van Beal, I. Gordon, M. Malfait, K. Temst, and C. Van Haesendonck, L. H. A. Leunissen, and R. Jonckheere, Phys. Rev. Lett.91, 187202-2 (2003). https://doi.org/10.1103/PhysRevLett.91.187202
  11. J. McCord, R. Schäfer, R. Mattheis, and K.-U. Barholz, J. Appl. Phys. 93, 5491 (2003). https://doi.org/10.1063/1.1562732
  12. J. Eisenmenger, Z.-P. Li, W. A. A. Macedo, and I. K. Schuller, Phys. Rev. Lett. 94, 057203 (2005) https://doi.org/10.1103/PhysRevLett.94.057203
  13. J. Camarero, J. Sort, A. Hoffmann, J. M. García-Martín,B. Dieny, R. Miranda, and J. Nogués, Phys. Rev. Lett. 95, 057204-1 (2005) https://doi.org/10.1103/PhysRevLett.95.057204
  14. A. Tilmanns, S. Oertker, B. Beschoten, G. Güntherodt, C. Leighton, and I. K. Schuller, J. Nogués, Apl. Phys. Lett. 89, 202512 (2006). https://doi.org/10.1063/1.2392283
  15. A. Paul, E. Kentzinger, U. Rucker, and T. Brückel, J. Phys.: Condens. Matter 18, L149 (2006) https://doi.org/10.1088/0953-8984/18/12/L01
  16. K.-S. Lee, S.-K. Kim, J. B. Kortright, K.-Y. Kim, and S.- C. Shin, J. of Magnetics 10(1), 36 (2005). https://doi.org/10.4283/JMAG.2005.10.1.036
  17. B. Beckermann, U. Nowak, and K. D. Usadel, Phys. Rev. Lett. 91, 187201-1 (2003). https://doi.org/10.1103/PhysRevLett.91.187201
  18. K.-Y. Kim, Y.-S. Hwang, J.-G. Park, N. Torikai, M. Takeda, S.-W. Han, and S.-C. Shin, Phys. Stat. Sol. (b) 244, 4499 (2007). https://doi.org/10.1002/pssb.200777317
  19. K.-Y. Kim, H.-C. Choi, C.-Y. You, and J.-S. Lee, J. Magnetics 13, 97 (2008) https://doi.org/10.4283/JMAG.2008.13.3.097
  20. K.-Y. Kim, H.-C. Choi, J.-H. Shim, D.-H. Kim, C.-Y. You, and J.-S. Lee, (submitted)

Cited by

  1. bilayers grown under a magnetic field vol.120, pp.17, 2016, https://doi.org/10.1063/1.4966935