• 제목/요약/키워드: Two-dimensional temperature distribution

검색결과 249건 처리시간 0.025초

화재 발생시 연기 거동에 대한 수치해석적 연구 - 아트리움 공간을 중심으로 - (A Numerical Study of Smoke Movement by Fire In Atrium Space)

  • 노재성;유홍선;정연태
    • 한국안전학회지
    • /
    • 제13권1호
    • /
    • pp.70-76
    • /
    • 1998
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire models : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed fire field model based on Computational Fluid Dynamics(CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i. e. Zone model and Field model predicted similar results for the clear height and the smoke layer temperature.

  • PDF

알루미늄재료의 Rheo-forming을 위한 성형공정해석 (Process Analysis for Rheo-Forming of Aluminum Materials)

  • 서판기;정영진;정경원;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.124-128
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum ahoy has been studied Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The unposed mathematical model is applied to the die shape of the two type. To calculate the velocities and temperature fields during rheology forming process, the each governing equation correspondent to the liquid and solid region are adapted. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity.

  • PDF

세라믹/금속접합재의 고온피로에 따른 접합계면의 응력분포 (Stress distribution of near the interface on high temperature fatigue in ceramic/metal bonded joints)

  • 박영철;허선철;윤두표;김광영
    • 한국해양공학회지
    • /
    • 제10권2호
    • /
    • pp.106-119
    • /
    • 1996
  • The ceramic has various high mechanical properties such as heat, abrasion, corrosion resistance and high temperature strength compared with metal. It also has low speciffic weight, low thermal expansibillity, low thermal conductivity. However, it could not be used as structural material since it is brittle and difficult for the machining. Therefore, there have been many researches to attempt to join ceramic with metal which is full of ductillity in order to compensate the weakness of ceramic.The problem is that residual stress develops around the joint area while the ceramic/metal joint material is cooled from high joining temperature to room temperature due to remarkable difference of thermal expansion coefficients between ceramic and metal. Especially, the residual stress at both edges of the specimen reduces the strngth of joint to a large amount by forming a singular stress field. In this study, two dimensional finite element method is attempted for the thermal elastic analysis. The joint residual stress of ceramic/metal developed in the cooling process is investigated and the change of joint residual stress resulted from the repetitive heat cycle is also examined. In addition, it is attempted to clarify the joint stress distribution of the case of tensile load and of the case of superposition of residual stress and actual loading stress.

  • PDF

Thermal-Aware Floorplanning with Min-cut Die Partition for 3D ICs

  • Jang, Cheoljon;Chong, Jong-Wha
    • ETRI Journal
    • /
    • 제36권4호
    • /
    • pp.635-642
    • /
    • 2014
  • Three-dimensional integrated circuits (3D ICs) implement heterogeneous systems in the same platform by stacking several planar chips vertically with through-silicon via (TSV) technology. 3D ICs have some advantages, including shorter interconnect lengths, higher integration density, and improved performance. Thermal-aware design would enhance the reliability and performance of the interconnects and devices. In this paper, we propose thermal-aware floorplanning with min-cut die partitioning for 3D ICs. The proposed min-cut die partition methodology minimizes the number of connections between partitions based on the min-cut theorem and minimizes the number of TSVs by considering a complementary set from the set of connections between two partitions when assigning the partitions to dies. Also, thermal-aware floorplanning methodology ensures a more even power distribution in the dies and reduces the peak temperature of the chip. The simulation results show that the proposed methodologies reduced the number of TSVs and the peak temperature effectively while also reducing the run-time.

유한요소법을 이용한 복합재 구조물의 3차원 경화 수치모사 (Three-dimensional cure simulation of composite structures by the finite element method)

  • 민경재;박훈철;윤광준
    • 한국항공우주학회지
    • /
    • 제30권6호
    • /
    • pp.39-45
    • /
    • 2002
  • 본 논문에서는 복합재의 3차원 경화 수치모사를 위해 유한요소 정식과정을 제시하였다. 이 정식을 기초로 하여 유한요소 프로그램을 개발하였다. 개발한 프로그램을 검증하기 위해 참고문헌에 제시된 수치예제에 대한 해석을 수행하였다. 본 논문에서의 경화 수치모사결과가 측정된 경화온도와 잘 일치하였다. 본 3차원 경화 수치모사에서는 1, 2차원 해석과는 달리 복합재 구조물의 임의 지점에서의 수치모사 결과분석이 가능하다. 개발된 유한요소 프로그램을 이용하면 불규칙한 형상을 가진 복합재 구조물과 일정하지 않은 오토클레이브 내부 온도분포 하에서의 경화 수치모사를 할 수 있다.

Planetary 형 반응기에서 웨이퍼와 기판 사이의 틈새가 웨이퍼 온도에 미치는 영향에 대한 연구 (Numerical Study on Wafer Temperature Considering Gap between Wafer and Substrate in a Planetary Reactor)

  • ;정종완;임익태
    • 반도체디스플레이기술학회지
    • /
    • 제16권3호
    • /
    • pp.1-7
    • /
    • 2017
  • Multi-wafer planetary type chemical vapor deposition reactors are widely used in thin film growth and suitable for large scale production because of the high degree of growth rate uniformity and process reproducibility. In this study, a two-dimensional model for estimating the effect of the gap between satellite and wafer on the wafer surface temperature distribution is developed and analyzed using computational fluid dynamics technique. The simulation results are compared with the results obtained from an analytical method. The simulation results show that a drop in the temperature is noticed in the center of the wafer, the temperature difference between the center and wafer edges is about $5{\sim}7^{\circ}C$ for all different ranges of the gap, and the temperature of the wafer surface decreases when the size of the gap increases. The simulation results show a good agreement with the analytical ones which is based on one-dimensional heat conduction model.

  • PDF

변압기의 3차원 온도분포 해석 (3-D Analysis of Temperature Distribution in Transformers)

  • 오연호;송기동;선종호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권9호
    • /
    • pp.434-441
    • /
    • 2003
  • This paper deals with the temperature characteristics according to the cooling medium and the duct size in model transformers. For the analysis and the temperature-rise tests, two 400kVA model transformers have been manufactured. One has been filled with the alpha oil as the cooling medium and constructed the duct sizes of $3\textrm{mm}$ and $5\textrm{mm}$ in the low-voltage and high-voltage windings respectively. The other has been filled the beta oil and the duct sizes were $4\textrm{mm}$ and $6\textrm{mm}$. The temperature-rise tests have been performed by the back-to-back method and the load factor has been controlled the range of 90%∼130%. The temperature values have been measured by the thermocouple and from the sixteen points in each transformer. A commercial CFD program "FLUENT" has been used for the analysis of temperature distribution. The geometry of transformer has been modeled to 3-dimensional by using the hybrid calculation mesh including the radiator. And also, the natural convection velocity has been measured at the oil top position, and compared with the calculated results.

Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • 제9권6호
    • /
    • pp.521-538
    • /
    • 2020
  • The present study is concerned with the thermoelastic interactions in a two dimensional homogeneous, transversely isotropic thermoelastic solid with new modified couple stress theory without energy dissipation and with two temperatures in frequency domain. The time harmonic sources and Hankel transform technique have been employed to find the general solution to the field equations.Concentrated normal force, normal force over the circular region, thermal point source and thermal source over the circular region have been taken to illustrate the application of the approach. The components of displacements, stress, couple stress and conductive temperature distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique. Numerically simulated results are depicted graphically to show the effect of angular frequency on the resulted quantities.

Finite Element Prediction of Temperature Distribution in a Solar Grain Dryer

  • Uluko, H.;Mailutha, J.T.;Kanali, C.L.;Shitanda, D.;Murase, H
    • Agricultural and Biosystems Engineering
    • /
    • 제7권1호
    • /
    • pp.1-7
    • /
    • 2006
  • A need exists to monitor and control the localized high temperatures often experienced in solar grain dryers, which result in grain cracking, reduced germination and loss of cooking quality. A verified finite element model would be a useful to monitor and control the drying process. This study examined the feasibility of the finite element method (FEM) to predict temperature distribution in solar grain dryers. To achieve this, an indirect solar grain dryer system was developed. It consisted of a solar collector, plenum and drying chambers, and an electric fan. The system was used to acquire the necessary input and output data for the finite element model. The input data comprised ambient and plenum chamber temperatures, prevailing wind velocities, thermal conductivities of air, grain and dryer wall, and node locations in the xy-plane. The outputs were temperature at the different nodes, and these were compared with measured values. The ${\pm}5%$ residual error interval employed in the analysis yielded an overall prediction performance level of 83.3% for temperature distribution in the dryer. Satisfactory prediction levels were also attained for the lateral (61.5-96.2%) and vertical (73.1-92.3%) directions of grain drying. These results demonstrate that it is feasible to use a two-dimensional (2-D) finite element model to predict temperature distribution in a grain solar dryer. Consequently, the method offers considerable advantage over experimental approaches as it reduces time requirements and the need for expensive measuring equipment, and it also yields relatively accurate results.

  • PDF

Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams

  • Mirjavadi, Seyed Sajad;Afshari, Behzad Mohasel;Shafiei, Navvab;Hamouda, A.M.S.;Kazemi, Mohammad
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.415-426
    • /
    • 2017
  • The thermo-mechanical vibration behavior of two dimensional functionally graded (2D-FG) porous nanobeam is reported in this paper. The material properties of the nanobeam are variable along thickness and length of the nanobeam according to the power law function. The nanobeam is modeled within the framework of Timoshenko beam theory. Eringen's nonlocal elasticity theory is used to develop the governing equations. Using the generalized differential quadrature method (GDQM) the governing equations are solved. The effect of porosity, temperature distribution, nonlocal value, L/h, FG power indexes along thickness and length and are investigated using parametric studies.