Browse > Article
http://dx.doi.org/10.12989/scs.2017.25.4.415

Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams  

Mirjavadi, Seyed Sajad (Department of Mechanical and Industrial Engineering, Qatar University)
Afshari, Behzad Mohasel (School of Mechanical Engineering, College of Engineering, University of Tehran)
Shafiei, Navvab (Department of Mechanical Engineering, Payame Noor University (PNU))
Hamouda, A.M.S. (Department of Mechanical and Industrial Engineering, Qatar University)
Kazemi, Mohammad (Hoonam Sanat Farnak Engineering and Technology Company)
Publication Information
Steel and Composite Structures / v.25, no.4, 2017 , pp. 415-426 More about this Journal
Abstract
The thermo-mechanical vibration behavior of two dimensional functionally graded (2D-FG) porous nanobeam is reported in this paper. The material properties of the nanobeam are variable along thickness and length of the nanobeam according to the power law function. The nanobeam is modeled within the framework of Timoshenko beam theory. Eringen's nonlocal elasticity theory is used to develop the governing equations. Using the generalized differential quadrature method (GDQM) the governing equations are solved. The effect of porosity, temperature distribution, nonlocal value, L/h, FG power indexes along thickness and length and are investigated using parametric studies.
Keywords
thermal vibration; Eringen theory; porous; imperfect nanobeam; 2D-FGM;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kato, K., Kurimoto, M., Shumiya, H., Adachi, H., Sakuma, S. and Okubo, H. (2006), "Application of functionally graded material for solid insulator in gaseous insulation system", IEEE T. Dielect. El. In., 13(2), 362-372.   DOI
2 Ke, L.L. and Wang, Y.S. (2012), "Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory", Smart Mater. Struct., 21(2), 025018.   DOI
3 Leclaire, P., Horoshenkov, K., Swift, M. and Hothersall, D. (2001), "The vibrational response of a clamped rectangular porous plate", J. Sound Vib., 247(1), 19-31.   DOI
4 Lee, H.L. and Chang, W.J. (2011), "Surface effects on axial buckling of nonuniform nanowires using non-local elasticity theory", IET Micro & Nano Lett., 6(1), 19-21.   DOI
5 Lee, W.Y., Stinton, D.P., Berndt, C.C., Erdogan, F., Lee, Y.D. and Mutasim, Z. (1996), "Concept of functionally graded materials for advanced thermal barrier coating applications", J. Am. Ceram. Soc., 79(12), 3003-3012.   DOI
6 Lei, Y., Adhikari, S. and Friswell, M. (2013), "Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams", Int. J. Eng. Sci., 66-67, 1-13.   DOI
7 Simsek, M. (2016), "Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions", Compos. Struct., 149, 304-314.   DOI
8 Thau, H.T. and VO, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66.   DOI
9 Simsek, M. and Yurtcu, H. (2013a), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386.   DOI
10 Simsek, M. and Yurtcu, H.H. (2013b), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386.   DOI
11 Touloukian, Y.S. and Ho, C. (1970), "Thermal expansion. Nonmetallic solids", Thermophysical properties of matter-The TPRC Data Series, New York: IFI/Plenum, 1970-, (Eds., Touloukian, Y.S.), (series ed.); Ho, CY${\mid}e$ (series tech. ed.), 1.
12 Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401.   DOI
13 Watari, F., Yokoyama, A., Omori, M., Hirai, T., Kondo, H., Uo, M. and Kawasaki, T. (2004), "Biocompatibility of materials and development to functionally graded implant for bio-medical application", Compos. Sci. Technol., 64(6), 893-908.   DOI
14 Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method", Meccanica, 50(5), 1331-1342.   DOI
15 Wosko, M., Paszkiewicz, B., Piasecki, T., Szyszka, A., Paszkiewicz, R. and Tlaczala, M. (2005), "Applications of functionally graded materials in optoelectronic devices", Optica Applicata, 35(3), 663-667.
16 Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel afshari, B. (2017), "Thermal buckling behavior of twodimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stresses, 40(10), 1201-1214. Doi: 10.1080/01495739.2017.1332962.   DOI
17 Li, C. (2013), "Size-dependent thermal behaviors of axially traveling nanobeams based on a strain gradient theory", Struct. Eng. Mech., 48, 415-434.   DOI
18 Li, C., Lim, C.W., Yu, J. and Zeng, Q. (2011), "Analytical solutions for vibration of simply supported nonlocal nanobeams with an axial force", Int. J. Struct. Stab. Dynam., 11(2), 257-271.   DOI
19 Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Composites Part B: Eng., 52, 84-92.   DOI
20 Yang, J. and Shen, H.S. (2002), "Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments", J. Sound Vib., 255(3), 579-602.   DOI
21 Muller, E., DraSar, C., Schilz, J. and Kaysser, W. (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng., 362(1-2), 17-39.   DOI
22 Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), 083514.   DOI
23 Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80.   DOI
24 Nazemnezhad, R. and Hosseini-hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199.   DOI
25 Nemat-alla, M. (2003), "Reduction of thermal stresses by developing two-dimensional functionally graded materials", Int. J. Solids Struct., 40(26), 7339-7356.   DOI
26 Anne, G., Vanmeensel, K., Vleugels, J. and Van der biest, O. (2005), "Electrophoretic deposition as a novel near net shaping technique for functionally graded biomaterials", Mater. Sci. Forum, 492-493,213-218.   DOI
27 Nemat-alla, M., Ahmed, K.I. and Hassab-allah, I. (2009), "Elastic-plastic analysis of two-dimensional functionally graded materials under thermal loading", Int. J. Solids Struct., 46(14-15), 2774-2786.   DOI
28 Youssef, H.M. and Elsibai, K.A. (2011), "Vibration of gold nanobeam induced by different types of thermal loading-a state-space approach", Nanosc. Microsc. Therm., 15(1), 48-69.   DOI
29 Zhang, Y., Wang, C. and Challamel, N. (2009), "Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model", J. Eng. Mech., 136(5),, 562-574.
30 Zhou, F.X. and Ma, Q. (2014), "Dynamic response of twodimensional fluid-saturated porous beam", Appl. Mech. Mater., 580-583, 169-174.   DOI
31 Ansari, R., Pourashraf, T. and Gholami, R. (2015), "An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory", Thin Wall. Struct., 93, 169-176.   DOI
32 Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E. and Mahmoud, S. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081.   DOI
33 Berrabah, H., Tounsu, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365.   DOI
34 Rahmani, O., Hosseini, S., Ghoytasi, I. and Golmohammadi, H. (2017a), "Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties", Appl. Phys. A, 123, 4.
35 Olevsky, E., Wang, X., Maximenko, A. and Meyers, M. (2007), "Fabrication of net-shape functionally graded composites by electrophoretic deposition and sintering: modeling and experimentation", J. Am.Ceram. Soc., 90(10), 3047-3056.   DOI
36 Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng., 362(1-2), 40-60.   DOI
37 Rafiee, M., Yang, J. and Kitipornchai, S. (2013), "Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers", Compos. Struct., 96, 716-725.   DOI
38 Rahmani, O., Niaei, A.M., Hosseini, S. and Shojaei, M. (2017b), "In-plane vibration of FG micro/nano-mass sensor based on nonlocal theory under various thermal loading via differential transformation method", Superlattices Microstruct., 101, 23-39.   DOI
39 Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70.   DOI
40 Renault, A., Jaouen, L. and Sgard, F. (2011), "Characterization of elastic parameters of acoustical porous materials from beam bending vibrations", J. Sound Vib., 330(9), 1950-1963.   DOI
41 Eltaher, M., Mahmoud, F., Assie, A. and Meletis, E. (2013b), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774.
42 De pietro, G., Hui, Y., Giunta, G., Belouettar, S., Carrera, E. and Hu, H. (2016), "Hierarchical one-dimensional finite elements for the thermal stress analysis of three-dimensional functionally graded beams", Compos. Struct., 153, 514-528.   DOI
43 Della, C. and Shu, D.W. (2015), "Vibration of porous beams with embedded piezoelectric sensors and actuators.
44 Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E: Low-dimensional Syst. Nanost., 83, 74-87.   DOI
45 Shafiei, N., Kazemi, M. Safi, M. and Ghadiri, M. (2016b), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94.   DOI
46 Simsek, M. (2014), "Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory", Composites Part B: Eng., 56, 621-628.   DOI
47 Elsibai K.A. and Youssef, H.M. (2011), "State-space approach to vibration of gold nano-beam induced by ramp type heating without energy dissipation in femtoseconds scale", J. Therm. Stresses, 34(3), 244-263.   DOI
48 Ahouel, M., Houari, M.S.A., Bedia, E. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981.   DOI
49 Amirian, B., Hosseini-ara, R. and Moosavi, H. (2014), "Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model", Appl. Math. Mech., 35(7), 875-886.   DOI
50 Eltaher, M., Alshorbagy, A.E. and Mahmoud, F. (2013a), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797.   DOI
51 Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248.   DOI
52 Juntarasaid, C., Pulngern, T. and Chucheepsakul, S. (2012), "Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity", Physica E: Lowdimensional Syst. Nanostruct., 46, 68-76.   DOI
53 Hassanin, H. and Jiang, K. (2010), "Infiltration-processed, functionally graded materials for microceramic componenets", Proceedings of the Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on, 2010. IEEE.
54 Hayati, H., Hosseini, S.A. and Rahmani, O. (2017), "Coupled twist-bending static and dynamic behavior of a curved singlewalled carbon nanotube based on nonlocal theory", Microsyst. Technol., 23(7), 2393-2401.   DOI
55 Ebrahimi, F. and SALARI, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380.   DOI
56 Hosseini-hashemi, S., Nahas, I., Fakher, M. and Nazemnezhad, R. (2014), "Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity", Acta Mechanica, 225(6), 1555-1564.   DOI
57 Hosseini, S. and Rahmani, O. (2017), "Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory", Meccanica, 52(6), 1441-1457.   DOI