• 제목/요약/키워드: Two-dimensional temperature

검색결과 1,052건 처리시간 0.03초

Electrically Driven Quantum Dot/wire/well Hybrid Light-emitting Diodes via GaN Nano-sized Pyramid Structure

  • 고영호;김제형;김려화;고석민;권봉준;김주성;김택;조용훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.47-47
    • /
    • 2011
  • There have been numerous efforts to enhance the efficiency of light-emitting diodes (LEDs) by using low dimensional structures such as quantum dots (QDs), wire (QWRs), and wells (QWs). We demonstrate QD/QWR/QW hybrid structured LEDs by using nano-scaled pyramid structures of GaN with ~260 nm height. Photoluminescence (PL) showed three multi-peak spectra centered at around 535 nm, 600 nm, 665 nm for QWs, QWRs, and QDs, respectively. The QD emission survived at room temperature due to carrier localization, whereas the QW emission diminished from 10 K to 300 K. We confirmed that hybrid LEDs had zero-, one-, and two-dimensional behavior from a temperature-dependent time-resolved PL study. The radiative lifetime of the QDs was nearly constant over the temperature, while that of the QWs increased with increasing temperature, due to low dimensional behavior. Cathodoluminescence revealed spatial distributions of InGaN QDs, QWRs, and QWs on the vertices, edges, and sidewalls, respectively. We investigated the blue-shifted electroluminescence with increasing current due to the band-filling effect. The hybrid LEDs provided broad-band spectra with high internal quantum efficiency, and color-tunability for visible light-emitting sources.

  • PDF

수직으로 놓인 후향계단위를 흐르는 유체유동에 미치는 부력의 영향에 관한 연구 (Buoyancy-Affected Separated Laminar Flow over a Vertically Located, Two-Dimensional Backward-Facing Step)

  • 백병준;박복춘;김진택
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1253-1261
    • /
    • 1993
  • 본 연구에서는 수직 평판에 위치한 후향계단면 위를 흐르는 유체유동의 특성, 즉 재부착점, 박리 및 재순환 영역에 미치는 부력의 영향을 수치해석 및 실험으로 조사한다. 유동의 가시화를 통해 재부착점의 위치를 측정하며 레이저도플러 유속계 (5W,Ar-Ion,DANTEC)에 의한 속도분포 및 CTA(constant temperature anemoneter,55M01 과 55M20, DANTEC)를 사용한 온도분포를 동시에 측정 함으로써 유동 특성 및 열전달에 미치는 부력의 영향을 검토한다.

단열층을 가지는 솔라 폰드의 수치해석 (Numerical analysis of solar pond with insulation layer)

  • 유직수;문수범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.264-269
    • /
    • 2016
  • 본 논문은 단열층을 가지는 솔라폰드의 온도특성을 알아보기 위한 기초 연구이다. 또한, 기존의 단열층을 가지지 않는 경우의 솔라폰드의 온도특성과 비교하였다. 수치해석법은 유한차분법(Finite-Difference Method)를 이용하였으며, 2차원 비정상의 상태를 가정하여 계산하였다. 수치해석을 통해 다음과 같은 결과를 얻었다. 1) 솔라 폰드의 깊이가 깊어지면 폰드의 하부까지 도달하는 일사량이 줄어들기 때문에 온도 상승 효과는 발생하지 않는 것을 확인했다. 2) 동절기에는 토양의 온도가 솔라 폰드 내 물의 온도보다 상대적으로 높아 토양에서 폰드 내로 열이 전달되는 것을 확인할 수 있었다. 3) 단열층을 가지는 솔라폰드의 경우, 태양의 의존율은 83.3%, 보일러의 의존율은 16.7%로 자연에너지의 의존도가 높은 것을 확인할 수 있었다.

건식 필름 적층 성형기에서 고온 롤러의 열해석 (Thermal Analysis of Hot Roller in a Dry Film Laminator)

  • 임광옥;이관수
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.975-980
    • /
    • 2001
  • The thermal analysis of the hot roller in a dry film laminator is studied numerically by steady-state two-dimensional heat transfer. In the laminating process for PDP glass or PCB, the temperature distributions in a hot roller are presented considering the effects of the roller rotation speed and the inner and outer radii of the roller. The results show that the temperature distributions are strongly dependent on Peclet number. If Pe number becomes larger, the iso-thermal lines are more concentric about the rotating axis and the temperature difference on the hot roller surface decreases exponentially. It also shows that if the contact angle between the roller and the film becomes smaller the temperature difference becomes smaller. However, the changes of the rollers inner or outer radius have little effect on the temperature difference.

Specific Heat Measurement of Insulating Material using Heat Diffusion Method

  • Choi, Yeon-Suk;Kim, Dong-Lak
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권2호
    • /
    • pp.32-35
    • /
    • 2012
  • The objective of the present work is to develop a precise instrument for measuring the thermal property of insulating material over a temperature range from 30 K to near room temperature by utilizing a cryocooler. The instrument consists of two thermal links, a test sample, heat sink, heat source and vacuum vessel. The cold head of the cryocooler as a heat sink is thermally anchored to the thermal link and used to bring the apparatus to a desired temperature in a vacuum chamber. An electric heater as a heat source is placed in the middle of test sample for generating uniform heat flux. The entire apparatus is covered by thermal shields and wrapped in multi-layer insulation to minimize thermal radiation in a vacuum chamber. For a supplied heat flux the temperature distribution in the insulating material is measured in steady and transient state. The thermal conductivity of insulating material is measured from temperature difference for a given heat flux. In addition, the specific heat of insulating material is obtained by solving one-dimensional heat diffusion equation.

Variations of the Polar Temperature in the Lower Stratosphere during 1955-2004

  • Choi, Wookap;Kim, Dongjoon
    • 대기
    • /
    • 제18권4호
    • /
    • pp.429-439
    • /
    • 2008
  • The lower-stratospheric polar temperature in winter and spring for both hemispheres is investigated based on the NCEP/NCAR 50-year reanalysis data with respect to the strength of the stratospheric eddy heat flux. Both the polar temperature and the eddy heat flux show significant variation on the decadal and year-to-year time scales except during the Southern Hemisphere winter. The year-to-year variation in the polar temperature is mainly determined by the eddy heat flux convergence. The eddy heat flux convergence is compared with the diabatic heating rate obtained from a two-dimensional model. Radiative heating caused by absorption of solar radiation is comparable to the heating caused by the eddy heat flux convergence in the Southern Hemisphere. The effect of ozone depletion on diabatic heating has been found to be secondary in the Northern Hemisphere, even in March 1997 when the record depletion of ozone took place.

저온 나노임프린트 공정에서 압력과 폴리머 레지스트 초기 두께의 영향 (Effect of Pressure and Initial Polymer Resist Thickness on Low Temperature Nanoimprint Lithography)

  • 김남웅;김국원;신효철
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.68-75
    • /
    • 2009
  • A major disadvantage of thermal nanoimprint lithography(NIL) is the thermal cycle, that is, heating over glass transition temperature and then cooling below it, which requires a significant amount of processing time and limits the throughput. One of the methods to overcome this disadvantage is to make the processing temperature lower Accordingly, it is necessary to determine the effects on the processing parameters for thermal NIL at reduced temperatures and to optimize the parameters. This starts with a clear understanding of polymer material behavior during the NIL process. In this work, the squeezing and filling of thin polymer films into nanocavities during the low temperature thermal NIL have been investigated based upon a two-dimensional viscoelastic finite element analysis in order to understand how the process conditions affect a pattern quality; Pressure and initial polymer resist thickness dependency of cavity filling behaviors has been investigated.

탄소강의 퀜칭과정에서 유한요소법을 이용한 온도해석 (Temperature Analysis for Carbon Steel at Quenching Process by F. E. M.(Finite Element Method))

  • 김옥삼;조의일;신영우
    • 열처리공학회지
    • /
    • 제7권2호
    • /
    • pp.103-110
    • /
    • 1994
  • It is well-known that the analysis of temperature distribution is substantilly important in optimal design of quenching process. The unsteady state temperature gradients generated during the quenching process were numerically calculated by the Finite Element Method(F. E. M.). Formulations of F. E. M. based weighted residural method were presented for the analysis of the two dimensional heat conduction problem. In the process of calculation, the temperature dependency of physical properties of the material was in consideration. At early stage of the quenching process, the abrupt temperature gradient has been shown in the surface of the carbon steel(SM45C).

  • PDF

칩 마운터용 리니어 모터 스테이지의 열저항 모델링 (Thermal Resistance Modeling of Linear Motor Driven Stages for Chip Mounter Applications)

  • 장창수;김종영;김영준
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.716-723
    • /
    • 2002
  • Heat transfer in linear motor driven stages for surface mounting device applications was investigated. A simple one-dimensional thermal resistance model (TRM) was introduced. In order to reduce three-dimensional nature to one-dimensional, a few assumptions and simplifications were employed suitably. A good agreement with a finite element heat transfer analysis in temperature profile was obtained. For validation, the analysis was compared with the measurement with respect to motor driving power. Overall discrepancy was less than 7$^{\circ}C$. The influence of two high thermal resistance parts, insulation sheet and thermal contact between the coil assembly and the mounting plate, was examined through the analysis. Additionally, the thermal resistance analysis was applied to another stage including an internal cooling-air passage, and was found available for this system as well. After validation, the cooling effect was surveyed in terms of motor power, and cooling-air and -water flow rate.

칩 마운터용 리니어 모터 스테이지의 열저항 모델링 (Thermal Resistance Modeling of Linear Motor Driven Stages for Chip Mounter Applications)

  • 장창수;김종영;김영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.96-101
    • /
    • 2001
  • Heat transfer in linear motor driven stages for surface mounting device applications was investigated. A simple one-dimensional thermal resistance model was introduced. In order to reduce three-dimensional nature to one-dimensional, a few assumptions and simplifications were employed suitably. A good agreement with a finite element heat transfer analysis in temperature profile was obtained. For validation, the analysis was compared with the measurement with respect to motor driving power. Overall discrepancy was less than $7^{\circ}C$. The influence of two high thermal resistance parts, insulation sheet and thermal contact between the coil assembly and the mounting plate, was examined through the analysis. Additionally, the thermal resistance analysis was applied to another stage including an internal cooling-air passage, and was found available for this system as well. After validation, the cooling effect was surveyed in terms of motor power, and cooling-air flow rate.

  • PDF