• Title/Summary/Keyword: Two-Point Boundary Value Problem

Search Result 88, Processing Time 0.029 seconds

POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL p-LAPLACIAN OPERATOR

  • Xu, Fuyi;Meng, Zhaowei;Zhao, Wenling
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.457-469
    • /
    • 2008
  • In this paper, we study the existence of positive solutions for the following nonlinear m-point boundary value problem with p-Laplacian: $\{{{{(\phi_p(u'))'\;+\;f(t,u(t))=0, \;0<t<1,} \atop u'(0)={\sum}{^{m-2}_{i=1}}\;a_iu'(\xi_i),} \atop u(1)={\sum}{^k_{i=1}}\;b_iu(\xi_i)\;-\;{\sum}{^s_{i=k+1}}\;b_iu(\xi_i)\;-\;{\sum}{^{m-2}_{i=s+1}}\;b_iu'(xi_i),}$ where ${\phi}_p(s)$ is p-Laplacian operator, i.e., ${\phi}_p(s)=\mid s\mid^{p-2}s$, p>1, ${\phi}_q\;=\;({\phi}_p)^{-1}$, $\frac{1}{p}+\frac{1}{q}=1$, $1\;{\leq}\;k\;{\leq}\;s\;{\leq}m\;-\;2$, $b_i\;{\in}\;(0,+{\infty})$ with $0\;<\;{\sum}{^k_{k=1}}\;b_i\;-\;{\sum}{^s_{i=k+1}}\;b_i\;<\;1$, $0\;<\;{\sum}{^{m-2}_{i=1}}\la_i\;<\;1$, $0\;<\;{\xi}_1\;<\;{\xi}_2\;<\;{\cdots}\;<\;{\xi}_{m-2}\;<\;1$, $f\;{\in}\;C([0,\;1]\;{\times}\;[0,\;+{\infty}),\;[0,\;+{\infty}))$. We show that there exists one or two positive solutions by using fixed-point theorem for operator on a cone. The conclusions in this paper essentially extend and improve the known results.

  • PDF

TWIN POSITIVE SOLUTIONS OF FUNCTIONAL DIFFERENTIAL EQUATIONS FOR THE ONE-DIMENSIONAL ρ-LAPLACIAN

  • Bai, Chuan-Zhi;Fang, Jin-Xuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.195-205
    • /
    • 2003
  • For the boundary value problem (BVP) of second order functional differential equations for the one-dimensional $\rho$-Laplaclan: ($\Phi$$_{\rho}$(y'))'(t)+m(t)f(t, $y^{t}$ )=0 for t$\in$[0,1], y(t)=η(t) for t$\in$[-$\sigma$,0], y'(t)=ξ(t) for t$\in$[1,d], suitable conditions are imposed on f(t, $y^{t}$ ) which yield the existence of at least two positive solutions. Our result generalizes the main result of Avery, Chyan and Henderson.

Neighboring Optimal Control using Pseudospectral Legendre Method (Pseudospectral Legendre법을 이용한 근접 최적 제어)

  • 이대우;조겸래
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.76-82
    • /
    • 2004
  • The solutions of neighboring optimal control are typically obtained using the sweep method or transition matrices. Due to the numerical integration, however, the gain matrix can become infinite as time go to final one in the transition matrices, and the Riccati solution can become infinite when the final time free. To overcome these disadvantages, this paper proposes the pseudospectral Legendre method which is to first discreteize the linear boundary value problem using the global orthogonal polynomial, then transforms into an algebraic equations. Because this method is not necessary to take any integration of transition matrix or Riccati equation, it can be usefully used in real-time operation. Finally, its performance is verified by the numerical example for the space vehicle's orbit transfer.

Hydrodynamic Stability Analysis of KEB Boundary-Layer Flow (KEB 경계층 유동의 유동특성 해석)

  • Lee Yun-Yong;Lee Kwang-Won;Hwang Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.683-686
    • /
    • 2002
  • The hydrodynamic instability of the three-dimensional boundary-layer over a rotating disk has been numerically investigated for three cases flows using linear stability theory (i.e. Rossby number, Ro = -1, 0, and 1). Detailed numerical values of the disturbance wave number, wave frequency, azimuth angle, radius (Reynolds number, Re) and other characteristics have been calculated for $K{\acute{a}}rm{\acute{a}}n$, Ekman and $B{\"{o}}ewadt$ boundary-layer flows. Neutral curves for these flows are presented. Presented are the neutral stability results concerning the two instability modes (Type I and Type II) by using a two-point boundary value problem code COLUEW that was based upon the adaptive orthogonal collocation method using B-spline. The prediction from the present results on both instability modes among the three cases agrees with the previously known numerical and experimental data well.

  • PDF

A station-keeping method considering satellite attitude (자세를 고려한 위성체 궤도유지 기법)

  • 박재훈;이장규;김유단;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.799-804
    • /
    • 1993
  • In this paper, the scheme of combining the orbit correction and attitude control of a 3-axis stabilized satellite is suggested. Being coupled and complimentary, it is preferable to achieve the required orbit correction and the desired attitude control simultaneously. A solution of the probes simultaneous control of orbit correction and attitude of a satellite, is obtained by solving the two point boundary value problem numerically. The first-order gradient algorithm is used to solve the numerical problem. The simulation results show that the East-West station keeping process with the combined system of an orbit correction and an attitude control is satisfactory.

  • PDF

On the Linear Quadratic Regulator for Descriptor Systems

  • Katayama, Tohru;Minamino, Katsuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.219-224
    • /
    • 1992
  • This paper deals with the linear quadratic optimal regulator problem for descriptor systems without performing a preliminary transformation for a descriptor system. We derive a generalized Riccati differential equation (GRDE) based on the two-point boundary value problem for a Hamiltonian equation. We then obtain an optimal feedback control and the optimal cost in terms of the solution of GRE. A simple example is included.

  • PDF

Three-Level Optimal Control of Nonlinear Systems Using Fast Walsh Transform (고속월쉬변환을 이용한 비선형 시스템의 3계층 최적제어)

  • Kim, Tai-Hoon;Shin, Seung-Kwon;Cho, Young-Ho;Lee, Han-Seok;Lee, Jae-Chun;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.505-513
    • /
    • 2001
  • This paper presents the new three-level optimal control scheme for the large scale nonlinear systems, which is based on fast walsh transform. It is well known that optimization for nonlinear systems leads to the resolution of a nonlinear two point boundary value problem which always requires a numerical iterative technique for their solution. However, Three-level costate coordination can avoid two point boundary condition in subsystem. But this method also has the defect that must solve high order differential equation in intermediate level. The proposed method makes use of fast walsh transform, therefore, is simple in computation because of solving algebra equation instead of differential equation.

  • PDF

Hydrodynamic Stability of Buoyancy-induced Flows Adjacent to a Vertical Isothermal Surface in Cold Pure Water (차가운 물에 잠겨있는 수직운동 벽면주위의 자연대류에 관한 안정성)

  • 황영규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.630-643
    • /
    • 1991
  • The hydrodynamic stability equations are formulated for buoyancy-induced flows adjacent to a vertical, planar, isothermal surface in cold pure water. The resulting stability equations, when reduced to ordinary differential equation by a similarity transformation, constitute a two-point boundary-value(eigenvalue) problem, which was numerically solved for various values of the density extremum parameter R=( $T_{m}$ - $T_.inf./) / ( $T_{o}$ - $T_.inf./). These stability equations have been solved using a computer code designed to accurately solve two-point boundary-value problems. The present numerical study includes neutral stability results for the region of the flows corresponding to 0.0.leq. R. leq.0.15, where the outside buoyancy force reversals arise. The results show that a small amount of outside buoyancy force reversal causes the critical Grashof number $G^*/ to increase significantly. A further increase of the outside buoyancy force reversal causes the critical Grashof number to decrease. But the dimensionless frequency parameter $B^*/ at $G^*/ is systematically decreased. When the stability results of the present work are compared to the experimental data, the numerical results agree in a qualitative way with the experimental data.erimental data.

Isogeometric analysis of gradient-enhanced damaged plasticity model for concrete

  • Xu, Jun;Yuan, Shuai;Chen, Weizhen
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.171-188
    • /
    • 2019
  • This study proposed a new and efficient 2D damage-plasticity model within the framework of Isogeometric analysis (IGA) for the geometrically nonlinear damage analysis of concrete. Since concrete exhibits complicated material properties, two internal variables are introduced to measure the hardening/softening behavior of concrete in tension and compression, and an implicit gradient-enhanced formulation is adopted to restore the well-posedness of the boundary value problem. The numerical results calculated by the model is compared with the experimental data of three benchmark problems of plain concrete (three-point and four-point bending single-notched beams and four-point bending double-notched beam) to illustrate the geometrical flexibility, accuracy, and robustness of the proposed approach. In addition, the influence of the characteristic length on the numerical results of each problem is investigated.

Existence and Non-Existence of Positive Solutions of BVPs for Singular ODEs on Whole Lines

  • LIU, YUJI;YANG, PINGHUA
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.997-1030
    • /
    • 2015
  • This paper is concerned with integral type boundary value problems of second order singular differential equations with quasi-Laplacian on whole lines. Sufficient conditions to guarantee the existence and non-existence of positive solutions are established. The emphasis is put on the non-linear term $[{\Phi}({\rho}(t)x^{\prime}(t))]^{\prime}$ involved with the nonnegative singular function and the singular nonlinearity term f in differential equations. Two examples are given to illustrate the main results.