• Title/Summary/Keyword: Two-Dimensional Analytic

Search Result 202, Processing Time 0.029 seconds

Errors in One-Dimensional Heat Transfer Analysis in a Hollow Cylinder Feedwater Pipe (속이 빈 원관에서 1차원적인 열전달 해석의 오차)

  • Gang, Hyeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.689-696
    • /
    • 1996
  • A comparison is made of the heat loss from a hollow cylinder, computed using an one-dimensional analytic method and a two-dimensional separation of variables scheme. For a two-dimensional analysis, the temperature of the inner surface as a boundary condition can be varied along the length of the cylinder by varing the temperature variation factor, b. Comparisons of the heat loss from the hollow cylinder using these two methods are given as a function of non-dimensional cylinder length, the ratio of the outer radius to the inner radius, temperature variation factor and Biot number. The result shows that the value of the heat loss from the hollow cylinder obtained using the one-dimensional analytic method becomes close to the value given by the two-dimensional separation of variables scheme as the value of Biot number and the non-dimensional hollow cylinder length increase and as the ratio of the outer radius to the inner radius decreases.

TWO-DIMENSIONAL RIEMANN PROBLEM FOR BURGERS' EQUATION

  • Yoon, Dae-Ki;Hwang, Woon-Jae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.191-205
    • /
    • 2008
  • In this paper, we construct the analytic solutions and numerical solutions for a two-dimensional Riemann problem for Burgers' equation. In order to construct the analytic solution, we use the characteristic analysis with the shock and rarefaction base points. We apply the composite scheme suggested by Liska and Wendroff to compute numerical solutions. The result is coincident with our analytic solution. This demonstrates that the composite scheme works pretty well for Burgers' equation despite of its simplicity.

Comparison of Heat Transfer Between 1-D and 2-D Analyses for a Rectangular Annular Fin (사각 환형 핀에 대한 1차원과 2차원 해석의 열전달 비교)

  • Kang, Hyung-Suk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1177-1181
    • /
    • 2009
  • Heat loss from a convective rectangular profile annular fin with variable inside fluid heat transfer coefficient and fin height is calculated by using both the one dimensional analytic method and two dimensional variables separation method. Heat loss from the two dimensional method and the relative error of heat loss between the one dimensional method and two dimensional method are presented as a function of the fin length, ambient convection characteristic number and fin height. One of the results shows that the relative error of heat loss between one dimensional method and two dimensional method is within 0.7% in the range of given parameters in this study.

  • PDF

Analysis of Two-Dimensional Transient Heat Conduction Problems in a Finite Strip by the Heat Balance Integral Method (熱平衡積分法에 의한 有限 Strip에서의 2次元 過渡熱傳導 問題의 解析)

  • 서정일;조진호;조종철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.417-424
    • /
    • 1983
  • This paper presents two methods of obtaining approximate analytic solutions for the temperature distributions and heat flow to two-dimensional transient heat conduction problems in a finite strip with constant thermal properties using the Heat Balance Integral. The methods introduced in this study are as follows; one using the Heat Balance Integral only, and the other successively using the Heat Balance Integral and an exact analytic method. Both methods are applicable to a large number of the two-dimensional unsteady conduction problems in finite regions such as extended surfaces with uniform thickness, but in this paper only solutions for the unsteady problems in a finite strip with boundary condition at the base expressed in terms of step function are provided as an illustration. Results obtained by both methods are compared with those by the exact two-dimensional transient analysis. It is found that both approximate methods generate small time solutions, which can not be obtained easily by any exact analytic method for small values of Fourier numbers. In the case of applying the successive use of the Heat Balance Integral and Laplace transforms, the analysis shows good agreement with the exact solutions for any Fourier number in the range of Biot numbers less than 0.5.

An Analytic Analysis for a Two-Dimensional Floating and Fluid-Filled Membrane Structure (부유식 유체저장용 2차원 막구조물의 이론적 해석)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.32-37
    • /
    • 2009
  • An analytic similarity shape solution was studied for a two-dimensional floating and fluid-filled membrane structure. The static shape of a membrane structure can be expressed as a set of nonlinear ordinary differential equations. The integration of curvature leads to an analytic solution for the shape, which contains unknown boundary values. Matching the upper and lower shapes at the free surface incorporated with their buoyancy allowed the unknowns to be determined. Some characteristic values of similarity shapes were evaluated and shapes are illustrated for various density ratios and volume efficiency ratios.

Errors in the Triangular Fin Analysis under Assuming the Fin Tip is Insulated (핀끝이 절연되었다는 가정하에 삼각핀 해석에서의 오차)

  • 강형석;김성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1783-1788
    • /
    • 1994
  • A comparison of the temperature distributions along the wall and center of the fin and the heat loss from the fin, computed assuming the fin tip is insulated and assuming it is not insulated in a triangular fin, is performed by the two-dimensional forced analytic method. When the fin tip is not insulated, a comparison between forced analytic method and analytic method is made in the heat loss and temperature along the fin wall. The value of Biot number varies from 0.01 to 1.0. The root temperature and surrounding convection coefficients of the fin are assumed as a constant. The results are (1) the analysis on the triangular fin assuming the fin tip is insulated does not produce a good value as compared to that of not-insulated case as the non-dimensional fin length decreases and as the value of Biot number increases and (2) the errors between forced analytic method and analytic method are very small, but the former method is better for computer running time and accuracy.

Regarding the Preliminary Feasibility Study of National R&D Program : With Focus on the Applicability of Theory of Attractive Quality (국가연구개발사업 예비타당성조사 제도의 평가방식에 대한 연구 : 매력적 품질이론의 적용 가능성에 대하여)

  • Yim, Sung-Min;Jung, Uk
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.2
    • /
    • pp.131-143
    • /
    • 2014
  • Purpose: This paper discusses the intrinsic assumption of one-dimensional relationship between the upper and lower levels in AHP(Analytic Hierarchy Process) for the Preliminary Feasibility Study of National R&D Program. This assumptions has not been questioned in academia and industry so far. Methods: This discussion is induced by understanding the Theory of Attractive Quality (Kano et al. 1984) and explains the limitation of AHP in the preliminary feasibility study of national R&D program. Results: In this paper, we propose a new questioning method based on two dimensional perspective, which is named as 2D-AHP (two dimensional AHP), to overcome the limitation. The main idea stems from the observation that the relationship between the upper and lower levels in AHP can vary depending on the subject of R&D. Conclusion: The two dimensional perspective pointed out in this paper should be more deeply studied in the field of MCDM(multi-criteria decision making) since it can be applied to the more general problems in human decision making.

Current Conservation Factors for Consistent One-Dimensional Neutronics Modeling

  • Lee, Kibog;Joo, Han-Gyu;Cho, Byung-Oh;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.235-243
    • /
    • 2000
  • A one-dimensional neutronics formulation is established within the framework of the nonlinear analytic nodal method such that it can result in consistent one-dimensional models that produce the same axial information as their corresponding reference three-dimension81 models. Consistency is achieved by conserving axial interface currents as well as the planar reaction rates of the three-dimensional case. For current conservation, flux discontinuity is introduced in the solution of the two-node problem. The degree of discontinuity, named the current conservation factor, is determined such that the surface averaged axial current of the reference three-dimensional case can be retrieved from the two-node calculation involving the radially collapsed group constants and the discontinuity factor. The current conservation factors are derived from the analytic nodal method and various core configurations are analyzed to show that the errors in K-eff and power distributions can be reduced by a order of magnitude by the use of the current conservation factor with no significant computational overhead.

  • PDF

Analytic springback prediction in cylindrical tube bending for helical tube steam generator

  • Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae-Seon;Won, Chanhee;Yoon, Jonghun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2100-2106
    • /
    • 2020
  • This paper newly proposes an efficient analytic springback prediction method to predict the final dimensions of bent cylindrical tubes for a helical tube steam generator in a small modular reactor. Three-dimensional bending procedure is treated as a two-dimensional in-plane bending procedure by integrating the Euler beam theory. To enhance the accuracy of the springback prediction, mathematical representations of flow stress and elastic modulus for unloading are systematically integrated into the analytic prediction model. This technique not only precisely predicts the final dimensions of the bent helical tube after a springback, but also effectively predicts the various target radii. Numerical validations were performed for five different radii of helical tube bending by comparing the final radius after a springback.

A study on the estimation of temperature distribution around gas storage cavern

  • Lee Yang;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.238-243
    • /
    • 2003
  • As there are many advantages on underground caverns, such as safety and operation, they can also be used for gas storage purpose. When liquefied gas is stored underground, the cryogenic temperature of the gas will affect the stability of the storage cavern. In order to store the liquefied gas successfully, it is essential to estimate the exact temperature distribution of the rock mass around the cavern. In this study, an analytic solution and a conceptual model that can estimate three-dimensional temperature distribution around the storage cavern are suggested. When calculating the heat transfer within a solid, it is likely to consider the solid as the intersection of two or more infinite or semi-infinite geometries. Therefore heat transfer solution for the solid is expressed by the product of the dimensionless temperatures of the geometries, which are used to form the combined solid. Based on the multi-dimensional transient heat transfer theory, the analytic solution is successfully derived by assuming the cavern shape to be of simplified geometry. Also, a conceptual model is developed by using the analytic solution of this study. By performing numerical experiments of this multi-dimensional model, the temperature distribution of the analytic solution is compared with that of numerical analysis and theoretical solutions.

  • PDF