• Title/Summary/Keyword: Two-Back Stress

검색결과 117건 처리시간 0.026초

극저온 환경에서의 피로균열 선단의 온도상승에 관한 연구 (A Study on Temperature Rising near Fatigue Crack Tip at Cryogenic Temperature)

  • 이준현
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.79-86
    • /
    • 1995
  • The structural materials for cryogenic technology have been recently developed to support the many modern large-scale application from superconducting magnets for nuclear fusion reactor, magnetic levitation railway to LNG tankers. However it is pointed out that quenching phenomenon is one of the serious problems for the integrity of these applications, which is mainly attributed to the rapid temperature rising in the material due to some extrinsic factors of structures. From the viewpoint of fracture mechanics, it is therefore very important to clarify the mechanism of temperature rising of structural material due to cyclic loading at cryogenic temperature. From this purpose, fatigue test was carried out for high manganese steel at liquid helium temperature(4.2K) using triangular stress waveform to identify both the mechanism of temperature rising near crack tip and the effect of loading stress waveform on temperature rising near crack tip and the effect of loading stress waveforms on temperature rising. As the results, two types of temperature rising, that is, regular and burst types were observed. And a periodical temperature rising corresponding to the stress waveforms was also found. The peaks of the temperature rising were recorded near both the maximum and the minimum values of the applied stress. The sudden temperature rises, which indicated the higher values than those of periodical temperature rises under the repetition of stress, were observed at the final region of crack growth. It was shown that the peak values of the temperature rising increased with stress intensity factor range.

Hardening of Steel Sheets with Orthotropy Axes Rotations and Kinematic Hardening

  • Hahm, Ju-Hee;Kim, Kwon-Hee;Yin, Jung-Je
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.91-97
    • /
    • 2000
  • Anisotropic work hardening of cold rolled low carbon steel sheets is studied. The experiments consist of two stage tensile prestraining and tensile tests. At the first prestraining, steel sheets are streteched along the rolling direction by 3% and 6% tensile strains. The second prestrains are at 0${\cric}$, 30${\cric}$, 60${\cric}$to the rolling directions by varying degrees. Tensile tests are performed on the specimens cut from the sheets after the two stage prestraining. A theoretical framework on anisotropic hardening is proposed which includes Hill's quadratic yield function, ziegler's kinematic hardening rule, and Kim and Yin's assumption on the rotation of orthotropy axes. The predicted variations of R-values with second stage tensile strain are compared with the experimental data.

  • PDF

상악견치 후방견인시 저항원 조절을 위한 MAS(Molar Anchoring Spring)의 초기 응력분포에 관한 광탄성학적 연구 (A PHOTOELASTIC STUDY ON THE INITIAL STRESS DISTRIBUTION OF THE MOLAR ANCHORING SPRING(MAS) DURING RETRACTION OF THE MAXILLARY CANINE)

  • 전윤식
    • 대한치과교정학회지
    • /
    • 제26권4호
    • /
    • pp.341-348
    • /
    • 1996
  • 저자는 마찰견인법으로 상악견치 후방견인시 저항원상실을 최소화하기 위해 근심 경사된 구치를 직립시키는 Molar Uprighting Spring의 작용기전을 응용하고 마찰견인법의 장점을 이용하여 임상적으로 사용이 용이하며 저항원상실이나 견치의 조절되지 못한 경사이동(uncontrolled tipping)등의 부작용을 최소화 할 수 있는 장치인 Molar Anchoring Spring(MAS)을 고안하였다. MAS를 임상에 적용한 결과 비교적 만족스러운 결과를 얻어 이에 장치를 소개하며 MAS의 저항원 조절능력과 견치의 이동양상을 평가하기 위하여 광탄성 모형을 제작한 후 주호선에 diameter 0.009" lumen size 0.030" NiTi closed coil spring만을 장착하여 250gm의 견인력이 발생하도록 한 경우와, 같은 NiTi closed coil spring으로 동일한 견인력 이 발생하도록 하고 .017" X .025" TMA wire로 $60^{\circ}$의 tip-back bend를 부여하여 수직교정력이 60-70gm이 되도록 제작한 MAS를 제1대구치 auxiliary tube에 삽입하고 견치 전방에 걸어준 경우를 비교실험 하여 견치견인시 초기응력분포를 관찰한 결과 다음과 같은 결과를 얻었다. 1. 주호선(main arch wire)에 저항원 조절을 위한 조치없이 견치에 수평견인력만을 가했을 때 구치부에 심한 저항원상실은 물론 견치의 원심이동양상도 조절되지 못한 경사이동(uncontrolled tipping)으로 나타났다. 2. 구치부의 저항원 조절을 위해 사용한 MAS는 견치의 원심이동 초기에 구치부 저항원 조절효과와 견치의 정출없는 조절된 경사이동(controlled tipping)을 유도할 수 있는 장치로 나타났다.

  • PDF

비틀림 동작에서의 허리근육의 피로도 패턴 (Fatigue Patterns on Trunk Muscles at Various Asymmetric Twisting Conditions)

  • 조영진;김정룡
    • 대한인간공학회지
    • /
    • 제20권2호
    • /
    • pp.71-82
    • /
    • 2001
  • Twisting posture in lifting tasks has been identified as a risk factor of low back pain. However, it has been usually estimated in terms of compressive stress or muscular activity. Thus, this study was conducted to predict the influence on muscular fatigue during lifting simulation. Fifteen young and healthy subjects were recruited and performed isometric trunk exertions during upright standing, two-level flexions and five-level asymmetric twisting conditions. EMG signals from five primary trunk muscles in right part of body were collected during 20sec for 45 different lifting conditions. RMS(root mean square) and MPF(mean power frequency) parameters were used to analyze the EMG signals. Twisting postures were significant in right erector spinae(ERSR), right latissimus dorsi(LATR), right internal oblique(INOR) for muscular activities. Especially, when trunk was $30^{\circ}$ CCW twisting posture. ERSR and INOR activities increased respectively by 11% and 3%. Regarding the trunk muscle fatigue, we found that MPF shifts in twisting posture increased 2.3 and 2.6 times for ERSR and INOR muscles respectively. Therefore, It is probable for workers to suffer from low back disorders when they were exposed to a extreme twisting posture during prolonged lifting. This study suggests NIOSH(National Institute for Occupational Safety and Health) lifting equation needs the time-duration multiplier in addition to asymmetric multiplier.

  • PDF

Behavior of CFS built-up battened columns: Parametric study and design recommendations

  • Vijayanand, S;Anbarasu, M
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.381-394
    • /
    • 2020
  • The structural performance of cold-formed steel (CFS) built-up battened columns were numerically investigated in this paper. The built-up column sections were formed by connecting two-lipped channels back-to-back, with a regular spacing of battens plates, and have been investigated in the current study. Finite element models were validated with the test results reported by the authors in the companion paper. Using the validated models, the parametric study was extended, covering a wider range of overall slenderness to assess the accuracy of the current design rules in predicting the design strengths of the CFS built-up battened columns. The parameters viz., overall slenderness, different geometries, plate slenderness (b/t ratio) and yield stress were considered for this study. In total, a total of 228 finite element models were analyzed and the results obtained were compared with current design strength predicted by Effective Width Method of AISI Specifications (AISI S100:2016) and European specifications (EN1993-1-3:2006). The parametric study results indicated that the current design rules are limited in predicting the accuracy of the design strengths of CFS built-up battened columns. Therefore, a design equation was proposed for the AISI and EC3 specifications to predict the reliable design strength of the CFS Built-up battened columns and was also verified by the reliability analysis.

순간중심 고정식 및 이동식 인공디스크 적용에 대한 유한요소 모델을 이용한 생체역학적 분석 (Biomechanical Analysis of the Implanted Constrained and Unconstrained ICR Types of Artificial Disc using FE Model)

  • 윤상석;정상기;김영은
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.176-182
    • /
    • 2006
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical changes with its implantation were rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, a nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Biomechanical analysis was performed for two different types of artificial disc having constrained and unconstrained instant center of rotation(ICR), ProDisc and SB Charite III model. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, forces on the spinal ligaments and facet joint, and stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400N were compared. The implanted model showed increased flexion-extension range of motion compared to that of intact model. Under 6Nm moment, the range of motion were 140%, 170% and 200% of intact in SB Charite III model and 133%, 137%, and 138% in ProDisc model. The increased stress distribution on vertebral endplate for implanted cases could be able to explain the heterotopic ossification around vertebral body in clinical observation. As a result of this study, it is obvious that implanted segment with artificial disc suffers from increased motion and stress that can result in accelerated degenerated change of surrounding structure. Unconstrained ICR model showed increased in motion but less stress in the implanted segment than constrained model.

민간경호${\cdot}$경비원의 개인적 특성에 따른 직무 스트레스의 반향관계 (The Relationship between Safe guard Accomplishment Personality and Stress Coping Behavior)

  • 공배완;김창호
    • 시큐리티연구
    • /
    • 제10호
    • /
    • pp.15-34
    • /
    • 2005
  • 스트레스는 현대인의 생활과정 중에서 피할 수 없는 일부분이다 .그러나 스트레스를 어떻게 대처하는가 하는 것도 업무의 효율성 측면에 있어서는 매우 중요한 요인이 되고 있다. 다시 말해, 스트레스는 대처행동에 따라 그 효과가 달라진다는 것으로, 동일한 스트레스원에 당면하더라도 개인적인 성격특성에 따라 어떤 사람은 강렬한 스트레스를 경험하기도 하고 또 다른 사람은 미약하거나 경험하지 않기도 한다. 이러한 관점에서 볼 때 개인적인 성격특성은 스트레스 대처행동에 영향을 줄 수 있는 중요한 요인임을 알 수 있다. 따라서 본 연구의 목적은 성격특성과 스트레스 대처행동과의 관계를 규명하고 아울러 성격특성과 스트레스 대처효과 즉, 적응과의 관계를 알아보고자 하는 것이다. 보다 효과적으로 적응할 수 있는 성격특성이 무엇인지를 규명하는 동시에 각 성격특성의 소유자들이 어떤 양식으로 스트레스원에 대처하는가를 밝혀줌으로써, 경호업무 수행자들의 행동을 이해하고 그들의 적응을 지도해 나가는데 필요한 자료를 제공하는데 의의를 두고자 한다.

  • PDF

인공디스크에 대한 생체역학적 분석 (Biomechanical Analysis of the Artificial Discs)

  • 김영은;윤상석;정상기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.907-910
    • /
    • 2005
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical change with its implantation was rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Two models implanted with artificial discs, SB $Charit\acute{e}$ or Prodisc, via anterior approach were also developed. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, force on spinal ligaments and facet joint, and the stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400 N were compared. The implanted model showed increased flexion-extension range of motion and increased force in the vertically oriented ligaments, such as ligamentum flavum, supraspinous ligament and interspinous ligament. The increase of facet contact force on extension were greater in implanted models. The incresed stress distribution on vertebral endplate for implanted cases indicated that additinal bone growth around vertebral body and this is matched well with clinical observation. With axial rotation moment, relatively less axial rotation were observed in SB $Charit\acute{e}$ model than in ProDisc model.

  • PDF

육군 훈련병의 근골격계 증상 영향 요인 (Factors Influencing Musculoskeletal Symptoms in Military Personnel during Basic Combat Training)

  • 이정민;김광숙
    • 대한간호학회지
    • /
    • 제46권4호
    • /
    • pp.523-533
    • /
    • 2016
  • Purpose: This study was done to examine physical, psycho-social, and individual factors influencing musculoskeletal symptoms among Korean military trainees. Methods: Using a correlation study design, military trainees who had completed almost of all the basic combat training (BCT) days were recruited from two military training units selected by convenience sampling. Data from 415 participants were analyzed. Results: Prevalence of musculoskeletal symptoms was 29.6% defined as a participant having pain or discomfort in one or more body parts during training hours for more than seven consecutive days. Back/pelvic (10.8%), knees (10.1%), shoulders (7.7%), feet/toes (5.6%), ankles (4.8%) were prone to musculoskeletal symptoms. Musculoskeletal symptoms appeared to be related to physical exertion during BCT, stress during BCT, social support from fellow trainees, or previous musculoskeletal injuries. In the logistic regression model, physical exertion during BCT (OR=2.27, 95% CI: 1.42~3.65), stress during BCT (OR=1.79, 95% CI: 1.15~2.78), and previous musculoskeletal injuries (OR=1.58, 95% CI: 1.01~2.47) were the significant factors affecting prevalence of musculoskeletal symptoms. Conclusion: Findings indicate that physical exertion and psycho-social stress should be managed to prevent musculoskeletal symptoms in military trainees with more attention being given to trainees having a history of musculoskeletal injuries.

한반도 동해 대륙주변부 신제삼기 퇴적분지의 진화 (Evolution of Neogene Sedimentary Basins in the Eastern Continental Margin of Korea)

  • 윤석훈;조성권
    • 한국석유지질학회지
    • /
    • 제1권1호
    • /
    • pp.15-27
    • /
    • 1993
  • 한반도 동해 대륙주변부에서 취득한 에어건 탄성파 탐사자료에 의하면, 이 지역에는 포항-영덕분지, 묵호분지, 후포분지 등, 세 개의 주요 신제삼기 퇴적분지가 대륙붕 및 대륙사면에 형성되어 있다. 이들 퇴적분지에서의 탄성파층서 및 구조분석 결과, 분지의 형성과 퇴적물 충진은 주향이동신장성(transtensional) 및 차후의 압축성(contractional) 광역지구조운동과 밀접한 관계를 갖고 있는 것으로 보인다. 동해 후열도분지가 확장되기 시작하던 올리고세와 전기 마이오세 동안, 한반도 동해 대륙주변부에는 신장성 전단력(tensional shear stress)이 작용하여 후포단층과 양산단층을 따라 우수주향이동 단 층운동이 일어났으며, 이들 평행한 두 단층 사이의 중첩부에는 당겨열림작용(pull-apart opening)에 의해 포항-영덕 분지가 형성되었다. 한편, 한국대지(Korea Plateau)와 접한 동해 대륙주변부에서는 블럭단층운동으로 인해 융기된 고기저(basement highs) 사이에 묵호분지가 형성되었다. 그 후 중기 마이오세 말에 동해가 닫히기 시작하면서, 연구지역의 응력장은 신장성에서 압축성으로 전환되었으며, 후기 마이오세와 전기 플라이오세, 두 번에 걸쳐 지각변형이 일어나면서 분지를 충진한 퇴적층이 변형되었고, 일부지역에서는 융기가 일어났다. 특히, 전기 플라이오세 동안에는 후포단층이 사교이동양상(oblique-slip sense)을 보이면서 재활성화 되었으며, 이로 인해 반지구(half-graben)형태의 후포분지가 형성되었다.

  • PDF