• Title/Summary/Keyword: Two phase deformation

Search Result 177, Processing Time 0.251 seconds

Thermomechanical deformation in porous generalized thermoelastic body with variable material properties

  • Kumar, Rajneesh;Devi, Savita
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.285-300
    • /
    • 2010
  • The two-dimensional deformation of a homogeneous, isotropic thermoelastic half-space with voids with variable modulus of elasticity and thermal conductivity subjected to thermomechanical boundary conditions has been investigated. The formulation is applied to the coupled theory(CT) as well as generalized theories: Lord and Shulman theory with one relaxation time(LS), Green and Lindsay theory with two relaxation times(GL) Chandrasekharaiah and Tzou theory with dual phase lag(C-T) of thermoelasticity. The Laplace and Fourier transforms techniques are used to solve the problem. As an application, concentrated/uniformly distributed mechanical or thermal sources have been considered to illustrate the utility of the approach. The integral transforms have been inverted by using a numerical inversion technique to obtain the components of displacement, stress, changes in volume fraction field and temperature distribution in the physical domain. The effect of dependence of modulus of elasticity on the components of stress, changes in volume fraction field and temperature distribution are illustrated graphically for a specific model. Different special cases are also deduced.

Microstructural Wear Mechanism of $Al_2O_3-5$ vol% SiC nanocomposite and $Si_3N_4$Ceramics

  • Riu, Doh-Hyung;Kim, Yoon-Ho;Lee, Soo-Wohn;Koichi Niihara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.179-185
    • /
    • 2001
  • Through the observation of wear scar of two ceramic materials, microstructural wear mechanisms was investigated. As for the $Al_2O_3$-5 vol% SiC nanocomposite, the grain boundary fracture was suppressed by the presence of SiC nano-particles. The intragranular SiC particles have inhibited the extension of plastic deformation through the whole grain. Part of plastic deformation was accommodated around SiC particles, which made a cavity at the interface between SiC and matrix alumina. On the other hand, gas-pressure sintered silicon nitride showed extensive grain boundary fracture due to the thermal fatigue. The lamination of wear scar was initiated by the dissolution of grain boundary phase. These two extreme cases showed the importance of microstructures in wear behavior.

  • PDF

Thermal Deformation Measurement Spherical Glasses Lens Using ESPI (ESPI를 이용한 안경용 렌즈의 열변형 측정)

  • Kim, Koung-Suk;Jang, Ho-Sub;Kim, Hyun-Min;Yang, Seung-Pill
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • The spherical glasses lenses are typically classified into two groups such as (+) diopter lens and (-) diopter lens by the refractive power index. The thermal deformation of a lens is occurred by external heat source and is changed respected to the diopter of a lens. In this paper, the thermal deformation of spherical glasses lenses were quantitatively measured by using ESPI (electronic speckle pattern interferometry) which has an advantage that the non-contact, non-destructive and precise deformation measurement is available due to the coherency characteristic. The temperature changes were measured by IR camera. It makes experiments over 14 types of the plastic glasses lenses. From the results, it was confirmed that the larger diopter lens showed the less thermal deformation in case of the (+) diopter lens. On the other hand, the thermal deformation of the (-) diopter lens was measured with uniform pattern when the same temperature changes were applied. Also, it was found that the thermnal deformation of the (+) diopter lens is less than that of the (-) diopter lens. Therefore, it is expected that when the thermal deformation is occurred to the various types of the lens, the variation of the focal length caused by the thermal distortion of a lens would be measured quantitatively.

High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys (자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동)

  • Park, Jong-Soo;Sung, Si-Young;Han, Bum-Suck;Jung, Chang-Yeol;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.

Geological structure of the Ogcheon belt in the Buunnyeong area, Mungyeong, Korea (문경 부운령지역에서 옥천대의 지질구조)

  • ;原郁夫;宮本隆實
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.82-94
    • /
    • 2001
  • The main geological structure of the Ogcheon belt in the Buunnyeong area, Mungyeong, which consists of three stratigraphic sequences, Joseon and Pyeongan Supergroups and Daedong Group, is characterized by the development of ESE-vergence structural unit (Dangok unit) and WNW-vergence structural units (Samsil and Bugongni units) onto an autochthonous unit (Buunnyeong unit). Three phases of deformation are recognized in this area. The lent phase of deformation coourred under the WNW-ESE compression, forming an upright-open fold (Buunnyeong-I fold) with NNE axial trend in the Buunnyeong unit. The second phase of deformation also under the WNW-ESE compression formed the Dangok, Samsil and Bugongni units, resulting in the further closing of the Buunnyeong-I open fold, the elongation of pebbles in the conglomerate rocks of a basal sequence of the Daedong Group, recumbent folds (Buunnyeong-II fold) and drag folds (Dangok fold) with NNE axial trend in the Buunnyeong and Dangok units, respectively. The third phase of deformation formed kink folds with its axis p1unging subvertically. The first and second phases of deformation took place before and after the deposition of the Daedong Group of the Upper Triassic -Lower Jurassic, respectively. These first two deformation events, which occurred under the same WNW-ESE compressional field, produced the regional NNE trend of geological structure in the Joseon and Pyeongan Supergroups of this area.

  • PDF

Coastally Trapped Waves over a Double Shelf Topography(I) : Free Waves with Exponential Topography (양향성 대륙붕의 대륙붕파(I): 지수함수적 해저지형에서의 자유파)

  • PANG Ig-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.6
    • /
    • pp.428-436
    • /
    • 1991
  • Double shelf topography allows the existence of two sets of waves propagating in opposite directons. In the case that two shelves are apart sufficiently enough, the solutions show two independent sets of waves which recover the single shelf waves. However, if the distance between two shelves is less than the Rossby deformation radius, the waves become dependent on the geometry of both shelves. Even over a double shelf topography, shelf waves propagate with the shallow water to the right in the Northern Hemisphere. The group velocity of shelf wave has the same direction as phase velocity in the long wave case, but the opposite direction in the short wave case. Each shelf mode has a zero group velocity at some intermediate value of wave length.

  • PDF

Experimental study on fire performance of axially-restrained NSC and HSC columns

  • Wu, Bo;Li, Yi-Hai
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.635-648
    • /
    • 2009
  • This paper describes fire performance of eight axially restrained reinforced concrete (RC) columns under a combination of two different load ratios and two different axial restraint ratios. The eight RC columns were all concentrically loaded and subjected to ISO834 standard fire on all sides. Axial restraints were imposed at the top of the columns to simulate the restraining effect of the rest of the whole frame. The axial restraint was effective when the column was expanding as well as contracting. As the results of the experiments have shown, the stiffness of the axial restraint and load level play an important role in the fire behaviors of both HSC and NSC columns. It is found that (a) the maximum deformations during expanding phase were influenced mostly by load ratio and hardly by axial restraint ratio, (b) For a given load ratio, axial restraint ratio had a great impact on the development of axial deformation during contraction phase beyond the initial equilibrium state, (c) increasing the axial restraint increased the value of restraint force generated in both the NSC and HSC columns, and (d) the development of column axial force during the contracting and cooling phase followed nearly parallel trend for columns under the same load ratio.

Time-relationship between Deformation and Growth of Metamorphic Minerals around the Shinbo Mine, Korea: the Relative Mineralization Time of Uranium Mineralized Zone (신보광산 주변지역에서 변성광물의 성장과 변형작용 사이의 상대적인 시간관계: 우라늄 광화대의 상대적인 광화시기)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.385-396
    • /
    • 2012
  • The geochemical high-grade uranium anormal zone has been reported in the Shinbo mine and its eastern areas, Jinan-gun, Jeollabuk-do located in the southwestern part of Ogcheon metamorphic zone, Korea. In this paper is reported the time-relationship between deformation and growth of metamorphic minerals in the eastern area of Shinbo mine, which consists of the Precambrian metasedimentary rocks (quartzite, metapelite, metapsammite) and the age-unknown pegmatite and Cretaceous porphyry which intrude them, and is considered the relative mineralization time on the basis of the previous research's result. The D1 deformation formed the straight-type Si internal foliation which is defined mainly as the arrangement of elongate quartz, biotite, opaque mineral in andalusite porphyroblast. The D2 deformation, which is defined by the microfolding of Si foliation, formed S2 crenulation cleavage. It can be divided into two sub-phases, early crenulation and late crenulation. The former occurs as the curvetype Si foliation in the mantle part of andalusite. The latter occurs as S1-2 composite foliation which warps around the andalusite. The andalusite porphyroblast began to grow under non-deformation condition after the formation of S1 foliation which corresponds to the straight-type Si foliation. It continued to grow before the late crenulation phase. The age-unknown pegmatite intruded after the D2 deformation and grew the fibrous sillimanite which random masks the S1-2 composite foliation. The D3 deformation formed F3 fold which folded the S1-2 composite foliation, D2 crenulation, fibrous sillimanite. It means that the intrusion of pegmatite related to the growth of the fibrous sillimanite took place during the inter-tectonic phase of D2 and D3 deformations. The retrograde metamorphism is recognized by the chloritization of biotite and two-way cleavage lamellae which is parallel to the S1-2 composite foliation and the F3 fold axial surface in the andalusite porphyroblast. It occurred during the D2 late crenulation phase and D3 deformation. In considering of the previous research's result inferring the most likely candidate for the uranium source rock as pegamatite, it indicates that the age-unknown pegmatite intruded during the inter-tectonic phase of D2 and D3 deformations, i.e. during the retrograde metamorphism related to the uplifting of crust, and formed the uranium ore zone around the Shinbo mine.

Experimental Study on Bubble Deformation of Two-Phase Fluids (이상(Two-phase) 유체의 변형거동에 대한 실험적 연구)

  • 김시조;황덕철;임영빈
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.234-241
    • /
    • 1999
  • 본 논문에서는 얇은 직사각형 단면 형상을 가지는 세 가지 서로 다른 유동로 안에서 움직이는 공기버블의 변형 거동에 대한 실험을 수행하였다. 압력 차이로 유체는 유동되며, 유동장을 따라서 변형하는 버블의 정상상태 모양을 관찰하였다. 벽면효과를 알아보기 위해 세 종류의 얇은 사각단면을 사용하였으며, 두 가지 종류의 작동 유체, 버블의 초기 크기, 작동 유체의 유량 등을 변화시켰을 때 이에 대한 공기 버블의 변형을 체계적으로 관찰하고 이들의 관계를 고찰하였다. 실험데이타를 정량화하여 캐필러리 수에 대한 버블의 무차원 속도비와의 관계를 상세하게 고찰하였다. 글리세린의 경우는 항상 버블 선단부의 곡률이 후단의 곡률보다 더 작게 나타났으며 실리콘 오일의 경우와 반대 경향이 관찰되었다. 두 경우 모두 캐필러리 수에 대한 속도비와 세장비 값은 1 보다 큰 값을 가졌다. 실리콘 오일의 경우는 주어진 Ca 수에 대하여 속도비가 글리세린의 경우보다 더 크게 나왔으며 버블 크기에 따른 속도비 분산도가 더 조밀하게 나타났다. 사각 단면 폭이 감소할수록 벽면 효과는 증대되었으며 같은 폭에 대해서는 버블 변형이 축소관의 경우가 가장 크게 나타났다.

  • PDF

The Effect of W Particle Volume Percent on the Residual Stress of W Heavy Alloy (텅스텐계 중합금에서 텅스텐 입자의 부피비가 잔류응력에 미치는 영향)

  • 송홍섭
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.52-59
    • /
    • 1994
  • Since the coefficient of thermal expansion (CTE) of matrix phase is larger about 4 times than that of W particle in tungsten heavy alloy, the thermal stresses due to the CTE difference between the two phases are induced in the alloy during heating and cooling processes. In the present study, a series of W heavy alloy containing various W particle volumes of 0 to 90% is made to investigate the residual stress taking place during cooling process. The CTE and residual stress of the series of alloy are measured by dilatometer and X-ray diffractometer. The residual stress of W particle is in compressive stress irrespective of W particle vol% and tends to increase with decreasing W particle vol% while that of the matrix phase is in tensile stress. The measured residual stress of W particle is about a third of calculated thermal stress. The influence of W particle vol% on the residual stress of W heavy alloy is discussed in terms of the deformation behaviors of W particle and matrix phase.

  • PDF