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Coastally Trapped Waves over a Double Shelf Topography(I) :
Free Waves with Exponential Topography
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Double shelf topography allows the existence of two sets of waves propagating in

opposite directons. In the case that two shelves are apart sufficiently enough, the solutions

show two independent sets of waves which recover the single shelf waves. However, if

the distance between two shelves is less than the Rossby deformation radius, the waves
become dependent on the geometry of both shelves.
Even over a double shelf topography, shelf waves propagate with the shallow water to

the right in the Northern Hemisphere. The group velocity of shelf wave has the same

direction as phase velocity in the long wave case, but the opposite direction in the short

wave case. Each shelf mode has a zero group velocity at some intermediate value of wave

length.

Introduction

Since the advent of the continental shelf wave
theory by Buchwald and Adams(1968), the theory
of coastally trapped waves has gradually been esta-
blished for coastal areas that lie next to a deep
ocean. They have shown that the continental shelf
waves are generated by the long-shore component
of the wind stress. A particular lucid explanation of
the generation mechanixm has been given by Gill
and Schumann(1974). They derived, in the long
wave limit and in the absence of friction, a first or-
der wave equation from which the amplitude of a
given mode of continental shelf waves can be dete-

rmined. Brink and ‘Allen(1978) have extended the
derivation to include friction and showed that there
is a frictionally induced cross-shelf phase shift as
well as an alongshore decay in wave amplitude.
The mode are also found to be coupled. Clarke and
Van Gorder(1986) first solved the fully coupled set
of wave equations by integration along the charac-
teristics. The general properties of coastally trap-
ped waves travelling over various monotonic depth
profiles have been reviewed by LeBlond and My-
sak(1978) and a general theory of these waves
have been discussed by Huthnance(1975, 1978).
There are other coastal areas in which the depth
of the ocean does not increase monotonically away
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Coastally Trapped Waves over a Double Shelf Topography( I )

from the shore. The bottom slope is reversed, for
example, across submarine banks and trenches.
This also admits trapped waves and these waves
have been investigated by Louis(1978), Mysak et
al. (1979, 1980, 1981), and Brink(1983). The bot-
tom slope is also reversed across a double shelf to-
pography such as in the Yellow Sea. Although the
coastally trapped waves over a double shelf topog-
raphy share some of the characteristics of waes
found over banks and trenches, the former differs
from the latter in important dynamical ways. In
spite of a basic establishment of the wave theory
over a double shelf topography(Pang, 1987: Hsueh
and Pang, 1989), it still needs to develop the
theory for clarifying the intrinsic dynamics. The
purpose of this paper is to establish the theory of
the free waves over a exponential double shelf to-
pography clearly.

Exponential bottom topography allows a simple
analytical solution to the coastally trapped wave
problem which can readily be compared to the re-
sults from existing theories. Thus, the first step
should be to establish the theory with exponential
bottom topography. We want to see if the theory
recovers the familiar results for the single shelf
case when the problem is reduced to that of two
dynamically separate shelves. We also want to’see
the effects of topography, compared with a single
shelf, and what the phase speeds(eigenvalues),
group speeds, and eigenfunctions of the two sets

of modes are like.

Field Equation and Boundary Conditions

Small pertubations to a barotropic ocean satisfy
the equation
Hpue + Hupa+ Hpyye + fHipe+ C(rp) v — (B 0? )/ pe

=—([f—o* /g p.+ (Y, —X,) 6]

In this equation, x, ¥, t, p, g f r, H, p,, X and
Y refer, respectively, to cross-shelf distance, along-
shore distance, time, the perturbation pressure di-
vided by mean water density, the acceleration due
to gravity, the Coriolis parameter, the bottom resis-
tance coefficient, the water depth, the atmospheric
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pressure divided by the mean water density, the
kinematic stresses in x and y direction at surface
(the wind stress divided by the mean water den-
sity). The subscripts indicate the derivatives.

Fig. 1 shows a schematic representation of the
coordinates system and the geometry of two shel-
ves(1 and 2) of exponential depth profile and a le-
vel intervening region. For convinence, l_et’s take
the positive x direction eastward. Then, the posi-
tive y direction is northward. The bottom topogra-
phy (H) can be set as

H,=Heexp(2bx), -B:<x< in shelf 1
H(X)=| Hn=H,, 0<x=L., in middle area

Ha=Hoexp(-2d{~Lu}), Lu<x<B; in shelf 2
where b and d are the bottom slope coefficients of
shelves 1 and 2. The subscripts 1, 2, and m indi-
cate shelf 1, shelf 2, and middle area, respectively.

@

To begin with, an intervening region is put bet-
ween the two shelves, that is, the shelf 1, interve-
ning region and shelf 2 are placed, respectively, in
-B:<x<0, in 0<x<Lp, in L,<x<B, At the coasts,
no-flux boundary conditions are applied at x=-B;,
B., where the depth is three times the Ekman la-
yer e-folding scale (Mitchum and Clarke, 1986).

northward

T X

Hi{x)=Hoexp (2bx) Ha(x)=Hoexp(-2d (x-Lm))

Schematic representation of the coordinate sy-
stem and geometry of two shelves of exponen-
tial depth profile and a level intervening region.
The coordinates x, y and z refer to the cross-
shelf, alongshore, and vertical directions and
are oriented eastward, northward, and upward,
respectively.

Fig. 1.
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That is, the depth integrated cross-channel velocity
component vanishes at a distance from the coast.
Also, continuous pressure and continuous mass tra-
nsport boundary conditions are applied at x=0, Ln.
The applied boundary conditions are summarized

as follows:
Piet (t/h) pi+ Py, =£Y/h at x=-B; (3—1)
Pi=P, at x=0 (3-2)
Pyt fPy=Prg T {Pry at x=0 (3-3)
P.=P, at x=L, (3—4)
Puxt & Py = Pay T 1Py at x=Ln (3—5)
Pax+ (t/h) Py + Py, =fY/h at x=B; (3—6)

Dispersion Relation

In order to compare this result with those of
existing theories, the horizontal divergence and bo-
ttom friction are not included here. The field equa-
tion (1) is reduced for non-divergent, low-freque-
ncy free waves in a frictionless barotropic flow as
follows:

Hpya+ Hspe + Hpyye + fHpy =0 @
The long-wave limit is not used here. Upon substi-
tuting for the pressure, p=F(x)exp(ifly+at}), (4)
yields

HF"+H'F — 2HF + (f/c)H'F=0 (5)
where the ‘prime’ means the derivative with res-
pect to x and c=w/£. (5) with the depth profiles
given by (2) yields the following eigen value prob-
lem for the frictionless eigenfunction F(X):

F\"+2bFy + (2bf/c— ¢)F,=0, -B,<x<0 (6—1)

Fo’—12F.=0, 0<x<L. (6—2)

F," —2dF, — (2df/c+ €9)F,=0, L.<x<B, (6—3)

F/'+ (f/c)F1=0, at x=-B, (7—-1)
Fi=F., at x=0 (7—2)
F/'=F., at x=0 (7—3)
F.=F: at x=L, (7—4)

m =F2, at x=L, (7-5)
F,' + (f/c)F,=0, at x=B, (7-6)

where F;, Fs, and F, represent the eigenfunctions
over, respectively, the shelf 1, intervening region
and shelf 2. From (6) and (7), we get the follo-
wing dispersion relation with b, d, By, Bz, and Ln
as parameters:

(—m—b+8€) (+n;—d+20)

X exp(—£€Ln) exp(+mB1) exp(—nyB,—Lu})

+(—n~b+8&) (+n+d—2)

Xexp{—£Ly) exp{+mB)) exp(+nz{Bz— Lo}

—(m~b+8) (+n—d+82)

Xexp(—£Ln) exp{—mBy) exp(—ns{B>— L)

—(+nm—b+2) (+n,+d—9)

Xexp{—£Ly) exp{—mB1) exp(+n{B.— L}

—(+m+b+€) (—nytd+4)

Xexp(+£2Ln) exp(+nB1) exp(—n{By—Ln})

—(+n1+b+2) (_Ilz“d_e)

Xexp(+£Ly) exp(+nmBy) exp(+ng{Bz— Lo}

+ (—m+b+e) (_n2+d+£)

X exp(+€Ln) exp(—mB1) exp(—ny{B,—La})

+ (—n1+b+3) (“nz_d_e)

Xexp(+2L,) exp(—mBy) exp(+ny{Bs—La)

=0 ®
where n;=[b?— (2bf/c—£2)]? (9-1)

n,=[d?*+ (2df/c+ £ ] (9—-2)

The equation (8) is simplifed as follows:

22tanh(£L) tanh(n;B;) tanh (ny{B; — L))
+£2tahn(mBy) [n.+dtanh(ng{B.~ L]

+ ¢tanh(ny{Bs—Ln}) [n;+btanh(n,B,)]
+tanh(¢L.) [ni+btanh(nBy)]

[n,+dtanh(ng{B. — Lo} 1=0 10

When L., goes to infinity as shown in Fig. 2 (a),
the dispersion relation (10) yields

[+ (€+b)tanh(nBy) ]

+ [nz+ (£+ dtanh(nafB:— LoD 1=0 av

The above dispersion relation shows two indepe-
ndent sets of continental shelf waves. It means that
if the shelves are apart sufficiently enough, two set
of continental shelf waves do not interact with each
other.

On the other hand, when L., goes to zero (dou-
ble shelf case) as shown in Fig. 2 (b), the disper-
sion relation (10) yields.

nztanh(mBy) + mtanh(n:B;)

+ (b+ d)tanh(n;By tanh{n.Bz) =0 (12)

This shows the dependences of two sets of shelf
waves. It turns out that two sets of shelf waves be-
come independent single shelf waves when the two
shelves are separated far enough, while they inte-
ract with each other if the two shelves are close
enough.
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Fig. 2. Schematic representations of the cross shelf
sections in various cases (a) two shelves with
an infinitely wide intervening region, (b) a
double shelf(two adjoining shelves), (¢) two
shelves with an infinitely wide one shelf, (d)
a single shelf of 400km width adjoining to a
constant depth open ocean. and (e) a single
shelf of 80km width adjoining to a constant
depth open ocean.

Phase Speed

When n; and n, are real, the equation (10) has
only trivial solution, since m and n; are positive as
defined in {(9) and also B;, L, and B;— L, are po-
sitive. In order to have non-trivial solution, n; or
nz must be imaginary. When n; is imaginary, b*—2
bf/c+£2<0. The frequency w must obey, for a po-
sitive wave number, the inequalty, 0<w/f<2b&/(b?
+¢2). The phase speed c is thus positive in the
Northern Hemisphere, which implies a southward
propagation of waves. Similarly, imaginary n, provi-
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des the inequality, —2d#/(d?+£2) <w/f<0. This gi-
ves a negative ¢ which implies northward phase
propagation. In the above inequality, w/f goes to
zero as £ goes both to zero and to infinity. Thus
each shelf wave mode has a zero group velocity at
some intermediate value of £. For fixed values of
the parameter, we can thus find the real solution
om(2), m(shelfs) =1 and 2, n (mode) =1, 2, =+ ,
of the dispersion relation (10). The solutions can
be ordered, for a fixed wave number, as

—2d8/(d*+ %) <wp/f< wa/f<@paff <0<
g/ </ f<aon/f<2be/(b?+£2).

One set of waves propagates northward and the
other propagates southward. The lower the mode,
the larger the absolute phase speed. These are co-
mparable to the trench waves (Mysak et al, 1979,
1981) and bank waves (Brink, 1983).

When L. goes to infinity, (11) yields the disper-
sion relations for non-trivial solutions, as follows:

tan(n,B) = —ny/(£+b) (13—1

tan(ny{Ba— L) = —m(2+d) (13-2)

Each of the two dispersion relations in (13) is
exactly the same as one obtained by Buchwald and
Adams (1968) for a single shelf adjacent to a deep
ocean region of constant depth.

The double shelf case also recovers the above li-
miting cases when one shelf is infinitely wide. In
such cases, the dispersion relation (12) yield the
above equations (13). For illustration, suppose that
B, goes to infinity as shown in Fig. 2 (c). Then,
b, m; and tanh(mB,) go to, respectively, 0, 1, and
1. (12) exactly reduces to (13—2). (12) shows the
dependence of the waves on the bottom topography
of both shelves. The appearance of the sum of
slope coefficients indicates the constraint of the to-
pography of one shelf on the propagation characte-
ristics of the shelf waves over the other.

The equations (12) can be transformed as fol-

lows:
tanh(n;By) +ny/(b+d) _ n/(b+d)
n/(b+d) tanh(nBz) +ny/(b+d)
=S (10

This equation can be rewritten, for non-trivial
solutions, such as:

n1B1

tan(n B =(S—1) (b+dB, (15-1D
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n:B,

—¢ 1 .y mBy _
tan(n,B,) = ( 5, 1) bt B, (15—2)
_ n/(b+d)
where Si= S (heB2) + /(b )
- tanh(n:B;) +ny/(b+d)
: n/(b+d)

To study the solutions of the dispersion rela-
tions, (15—1) and (15~2), consider the intersec-
tions of the graphs of the both sides. As is illutra-
ted in Fig. 3(an example), there are two infinite
sets of intersections, nim and nz,. The former and
the latter subscripts indicate the sets and the mo-
des, respectively. Since niB; and n.B: are positive,
solutions are only in the right hand side. Some to-
pography changes of the any shelf affect the gra-
dient of line, and thus the phase speeds of both
sets of waves are changed. This shows the const-
raint of the topography of the one shelf on the
propagation characteristics of the shelf waves over
the other.

—'—j—— - -\:— T:’— _————

Fig. 3. Graphical llustraction of two infinitely sets of
solutions.

Fig. 4 and 5 show the phase speeds of the first
10 modes in the two sets of shelf waves. One set
in Fig. 5 is propagating southward along the shelf
1 and the other set in Fig. 4 is propagating north-
ward along the shelf 2. The shelf widths used in
this calculation are 400km for shelf 1 and 80km for
shelf 2 as in Fig. 2 (b). The first mode has the
maximum phase speed and thereafter the phase
speed decreases in higher mode. Since the phase
speed of shelf waves is in some way propotional to
shelf width, the phase speed of the southward pro-
pagating waves is larger than that of the northward
propagating waves.
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Fig. 4. Phase speeds of the first 10 modes of shelf
waves propagating northward.
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Fig. 5. Phase speeds of the first 10 modes of shelf
waves propagating southward.

Fig. 6 and 7 show the comparisons of eigenva-
lues between a single shelf and a double shelve.
The values are listed in Table 1. The single shelf
is adjoining to an open ocean of a constant depth.
The values of shelf width, used in this calculation,
are 400km and 80km, and the deepest depth is 100
m. The cross sections of above two shelves are il-
lustrated in Fig.2 (d) and (e). The first mode in
single shelf cases in Table 1 has a tremendous
phase speed. The unrealistic phase speeds arise
from the non-divergent assumption. This shows
that the divegent assumption is necessary for a
cross-shelf scale of hundreds meters. The phase
speed of the second mode in the single shelf case
corresponds to that of the first mode in the double
shelf case, and so on. The phase speeds of 80km
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Table 1.

Eigenvalues of the first 10 modes for the ca-
ses of (a) single shelf of 400km width, (b)
single shelf of 80km width, and (c) double
shelves of 400km~80km width. (non-diver-
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Fig. 6. Comparison of the phase speeds of the north-
ward propagating waves in a double shelf (a)
with those of the single sheif waves (b).

[}

gent case)
single single double shelf
mode shelf shelf (400~ 800km)
400km 80km 400km 80km
1 (83550)  (-17.278) 5911 -1.833
2 5.176 - 1.035 1.496 -0.382
3 1.360 - 0271 0.654 -0.154
4 0.608 - 0.122 0.364 -0.081
5 0.343 - 0.069 0231 -0.051
6 0.220 - 0044 0.159 -0.034
7 0.153 - 0031 0.116 -0.025
8 0.112 - 0.022 0.089 -0.019
9 0.086 - 0,017 0.070 -0.015
10 0.068 - 0014 0.056 -0.012
11 0.055 - 0011
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Fig. 7. Comparison of the phase speeds of the south-
ward propagating waves in a double shelf (a)
with those of the single shelf waves (b).

shelf have significant influences from the other
shelf for a double self case. The results show the
effects of bottom topography on the phase speeds.

Eigenfunctions

The eigenfuntions for the eigenvalue problem
(6) —(7) are as follows:
F: in shelf 1
F. in a middle area
F, in shelf 2

F:
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al exp(ALy) * (np+by) + a2 exp(—ALy) - (np+ by)
a2-exp(—ALz) " (ng+ b)

1y coshni (x+ Ly} + (b—1/c) *sinhny (x+ Ly)
nt* coshmLy +(b—1/c) -sinhnyLy

A al-exp(— %)+ (nz+by) +a2- exphx (na+by)

" a2-{m+a3 - tanhniL

a2-exp(ALy) - (ny + ) +al-exp(—ALy) - (m + o)

A

F.=

X exp(—bx)

Fo=A a2 exp(ALy) * (m+cb)
12 coshng(Lm—x) + (d+1/¢) * sinhny(La—x)
Xexp(~de) = L)+ @+ 1/0)-siahtlm L)
where
al=A+1/c,
a2=r—1/c,
a3=b+A,

b1=(d+A)tanhne(Ly— L2,

b2=(d—Mtanhn:(Ln—Le),

c1=(b+A)tanhn,L;,

2= (b—A)tanhmL,. A and A are, respectively, a
arbitrary constant and the Rossby Deformation Ra-
dius.

Fig. 8 shows the amplitudes of the first two ei-
genfunctions across the shelves for each set of
shelf waves. The figures (A) and (B) in Fig. 8 re-
present the continental shelf waves propagating
along the shelf 2 and 1, respectively. Thus, the wa-
ves in (A) and (B) propagate into and out of the
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Fig. 8. The amplitudes of the first 2 eigenfunctions of
(A) shelf waves propagating northward and
(B) shelf waves propagating southward. The
shelf widths are 400km for shelf | and 40km
for shelf 2.

paper, respectively. The first eigenfunction has 1
node across the shelf and the next mode has 2 no-
des and so on. It should be noted that, in the case
of single shelf case, the first mode does not hae
any node (Clarker and VanGoder, 1986). The sou-
thward (northward) propagating waves oscillate
over the shelf 1 (shelf 2) and extend in an expo-
nentially decay over the shelf 2 (shelf 1).

When the horizontal divergence terms are not
included in the equations, there is no Kelvin wave
in the solution whose amplitude has no node in the
cross-shelf direction. However, we do not have any
analytical solution in a horizontal divergence case
with an exponential topography. That is why many
reports, including this report, do not have the first
mode of no node. It does not mean that there is
no such a mode. Physically, it is quite natural to
have the mode in real oceans. Over a double shelf
topography, we also have those modes for a horizo-
ntal divergence case with a linear topography
(Hsueh & Pang, 1989).

Conclusions

The bottom topography as in Fig. 1 allows the
existence of two sets of waves propagating in op-
posite directions. These are comparable to the tre-
nch waves (Mysak et al, 1979, 1981) and bank

waves (Brink, 1983). In the case that two shelves
are apart sufficiently, the solutions show two inde-
pendent sets of waves which recover the single
shelf waves shown by Buchwald and adams {1968).
However, over a double shelf in which two shelves
ard adjoining each other, the waves become depen-
dent on the geometry of both shelves. The disper-
sion relation shows the constraint of the topogra-
phy of the one shelf on the propagation characteri-
stics of the shelf waves over the other. The com-
parisons of phase speeds between a single shelf
and a double shelf clearly show the influences of
the bottom topography of the other shelf.

Even over a double shelf topography, shelf waves
propagate with the shallow water to the right in the
Northern Hemisphere. The group velocity of shelf
wave has the same direction as phase velocity in
the long wave case, but the opposite direction in
the short wave case. Thus, each shelf mode has a
zero group velocity at some intermediate value of
wave length. It means that the basic characteristics
of continental shelf waves are not changed by the
bottom topography.

The first eigenfunction over a double shelf topo-
graphy has one node for a non-divergnece case,
while it"does not have any node for a horizontal
divergence case. For a single shelf case, the first
mode has no node too if the horizontal divergence
terms are included. The amplitude of shelf waves
oscillate over one shelf and extend in an exponen-
tially decay over the other shelf. Therefore, the co-
ntinental shelf wave energy over a double shelf is
mostly confined to the shelf along which the wave
propagates.
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