• Title/Summary/Keyword: Two orthogonal axis

Search Result 34, Processing Time 0.024 seconds

A Study on the On-machine Profile Measurement of Large Aspheric Form using Capasitive Sensor (정전용량센서를 이용한 대구경 비구면 형상의 기상측정에 관한 연구)

  • Kim, Geon-Hee;Won, Jonh-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.56-61
    • /
    • 2003
  • This paper described about on-machine profile measurement of aspheric surfaces using contact probing technique in ultra precision machine. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime using a circle leaf spring mechanism and a capacitive-type sensor. The contact probe which is installed on the z-axis is In touch with the aspheric objects which is fixed on the spindle of the diamond turning machine(DTM) during the measuring procedure. The x, z-axis motions of the machine are monitored by a set of two orthogonal plane mirror type laser interferometers. As a results, the developed contact probe on-machine measurement system showed 10 nanometers repeatability with a ${\pm}2{\sigma}$ and uncertainty of 200 nmPv.

  • PDF

A study on Ultra Precision machining process for Aspheric (비구면 초정밀절삭 공정기술에 관한 연구)

  • 김건희;홍권희;김효식;김현배;양순철;윈종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.90-93
    • /
    • 2003
  • This paper described about the ultra-precision profile measurement of aspheric surfaces using contact probing technique. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime utilizing a circle leaf spring mechanism and a capacitive-type sensor. The, contact probe is attached on the z-axis during measurement while aspheric object are supported on the diamond turning machine(DTM). The machine xz-axis motions are monitored by a set of two orthogonal plane mirror type laser interferometers. Experimental results show that the contact probing technique developed of on-machine measurement system in this investigation is capable of providing a repeatability of 10 nanometers with a $\pm$20 uncertainty of 200nmPv.

  • PDF

A study on the diagonal error compensation and squareness measurement of linear motor (리니어 모터의 직각도 측정과 대각선 오차 보정에 관한 연구)

  • Kim J.H.;Lee C.W.;Song J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.287-288
    • /
    • 2006
  • This paper introduces an approach of method to compensate accuracy error of diagonal direction. The measurement of squareness error is an important parameter in performance test of two axis Linear Motor and this exerts influence on accuracy error of diagonal test. However, previous knowledge management approaches are limited in deviation measurement of optical axis or restrictive elements of diagonal measurements using laser interferometer. But this proposed method calculated diagonal accuracy error which was occurred by squareness error and compensated squareness error using orthogonal correction method of PMAC. From this result, diagonal accuracy error is significantly reduced. This experimental results show that geometric error of squareness error is easily corrected by dynamic coordinate correction.

  • PDF

Development of On-machine Measurement System utilizing a Capacitive-type Sensor (정전용량형 센서를 이용한 기상계측시스템의 개발)

  • 김건희;박순섭;박원규;원종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.391-395
    • /
    • 2002
  • This paper described about the ultra-precision profile measurement of aspheric surfaces using contact probing technique. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime utilizing a leaf spring mechanism and a capacitive-type sensor. The contact probe is attached on the z-axis during measurement while aspheric objects are supported on the single point diamond turning machine(SPDTM). The machine xz-axis motions are monitored by a set of two orthogonal plane mirror type laser interferometers. Experimental results show that the contact probing technique developed of On-machine Measurement System in this investigation is capable of providing a repeatability of 20 nanometers with a $\pm$20 uncertainty of 300 nanometers.

  • PDF

Experimental investigation on the turbulent elliptic jets by using a 3-D LDV system (3-D LDV 시스템을 이용한 타원제트의 난류특성에 관한 연구)

  • 권영철;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2160-2170
    • /
    • 1991
  • Three-dimensional turbulent structures in the near field of elliptic jet were experimentally investigated by using a three-color, three-component Laser Doppler Velocimeter. The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter(De) was about 4*10$^{4}$. The turbulent characteristics of a sharp-edged elliptic nozzle with aspect ratio of 2 were analyzed along major and minor axis at X/De=2,3,5,7 and along the centerline up to X/De=14. Quantities measured at each point with the 3-D LDV system were three orthogonal velocity components, turbulent intensity, skewness, flatness, and Reynolds shear stress. The nondimensional mean velocities coincided well with the Schlichting's empirical curve with going downstream. Elliptic jet of AR=2 had two switching points at about X/De=2 and 16. The turbulent intensity along the minor axis was distributed widely than that along the major axis. In the near field, X/De<5, the Reynolds shear stresses of the inner part of the elliptic jet had negative value, which indicated the enhancement of entrainment toward the inner part.

The Effect of Aspect Ratio on the Flow Characteristics of Elliptic Jets (종횡비에 따른 타원제트의 유동특성에 관한 실험적 연구)

  • 권영철;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1156-1162
    • /
    • 1992
  • The effect of aspect ratio on the flow characteristics of elliptic jets was experimentally investigated. The flow characteristics of sharp-edged elliptic nozzles with aspect ratio of 1 (round nozzle), 2 and 4 were measured by using a 3-D LDV system along the major and minor axis at X/De = 2, 3, 5, 7 and along the centerline up to X/De = 14. At each measurement point mean velocites, turbulent intensities, skewness of three orthogonal velocity components, and Reynolds shear stress were obtained. The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter(De) was about 4 * 10$^{4}$. Difference in the spreading rate along the major and minor axis was remarkable. The jet half width along the major axis decreased at first and then increased again with going downstream. But the jet width along the minor axis increased steadly. The elliptic jet of AR = 2 had two switching points within the measurement range, while that of AR = 4 had only one. (AAA) : The elliptic jet of AR = 2 showed larger velocity decay rate than that of AR = 1 and AR = 4. The effect of aspect ratio on the flow characteristics of elliptic jets was dominant in the near jet regions of X/De < 7, and the skewness and Reynolds shear stress had quite different distribution depending on the aspect ratio of the elliptic nozzle.

A comparative study between the new model and the current model for T-shaped combined footings

  • Garay-Gallegos, Jesus Rafael;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Aguilera-Mancilla, Gabriel;Garcia-Canales, Edith
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.525-538
    • /
    • 2022
  • This paper presents a more general model for T-shaped combined footings that support two columns aligned on a longitudinal axis and each column provides an axial load and two orthogonal moments. This model can be applied to the following conditions: (1) without restrictions on its sides, (2) a restricted side and (3) two opposite sides restricted. This model considers the linear soil pressure. The recently published works have been developed for a restricted side and for two opposite sides restricted by Luévanos-Rojas et al. (2018a, b). The current model considers the uniform pressure distribution because the position of the resultant force coincides with the center of gravity of the surface of the footing in contact with the soil in direction of the longitudinal axis where the columns are located. This paper shows three numerical examples. Example 1 is for a T-shaped combined footing with a limited side (one column is located on the property boundary). Example 2 is for a T-shaped combined footing with two limited opposite sides (the two columns are located on the property boundary). Example 3 is for a T-shaped combined footing with two limited opposite sides, one column is located in the center of the width of the upper flange (b1/2=L1), and other column is located at a distance half the width of the strip from the free end of the footing (b2/2=b-L1-L). The main advantage of this work over other works is that this model can be applied to T-shaped combined footings without restrictions on its sides, a restricted side and two opposite sides restricted. It also shows the deficiencies of the current model over the new model.

A Study on Dosimetry for Small Fields of Photon Beam (광자선 소조사면의 선량 측정에 관한 연구)

  • 강위생;하성환;박찬일
    • Progress in Medical Physics
    • /
    • v.5 no.2
    • /
    • pp.57-68
    • /
    • 1994
  • Purpose : The purposes are to discuss the reason to measure dose distributions of circular small fields for stereotactic radiosurgery based on medical linear accelerator, finding of beam axis, and considering points on dosimetry using home-made small water phantom, and to report dosimetric results of 10MV X-ray of Clinac-18, like as TMR, OAR and field size factor required for treatment planning. Method and material : Dose-response linearity and dose-rate dependence of a p-type silicon (Si) diode, of which size and sensitivity are proper for small field dosimetry, are determined by means of measurement. Two water tanks being same in shape and size, with internal dimension, 30${\times}$30${\times}$30cm$^3$ were home-made with acrylic plates and connected by a hose. One of them a used as a water phantom and the other as a device to control depth of the Si detector in the phantom. Two orthogonal dose profiles at a specified depth were used to determine beam axis. TMR's of 4 circular cones, 10, 20, 30 and 40mm at 100cm SAD were measured, and OAR's of them were measured at 4 depths, d$\sub$max/, 6, 10, 15cm at 100cm SCD. Field size factor (FSF) defined by the ratio of D$\sub$max/ of a given cone at SAD to MU were also measured. Result : The dose-response linearity of the Si detector was almost perfect. Its sensitivity decreased with increasing dose rate but stable for high dose rate like as 100MU/min and higher even though dose out of field could be a little bit overestimated because of low dose rate. Method determining beam axis by two orthogonal profiles was simple and gave 0.05mm accuracy. Adjustment of depth of the detector in a water phantom by insertion and remove of some acryl pates under an auxiliary water tank was also simple and accurate. TMR, OAR and FSF measured by Si detector were sufficiently accurate for application to treatment planning of linac-based stereotactic radiosurgery. OAR in field was nearly independent of depth. Conclusion : The Si detector was appropriate for dosimetry of small circular fields for linac-based stereotactic radiosurgery. The beam axis could be determined by two orthogonal dose profiles. The adjustment of depth of the detector in water was possible by addition or removal of some acryl plates under the auxiliary water tank and simple. TMR, OAR and FSF were accurate enough to apply to stereotactic radiosurgery planning. OAR data at one depth are sufficient for radiosurgery planning.

  • PDF

Study of Fault Detection Method for Two-Degree of Freedom Dynamically Tuned Gyros on Orthogonal Configuration (2 자유도 동조자이로 직교배치에 대한 고장검출기법 연구)

  • Kim, Jeong-Yong;Oh, Jun-Seok;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.150-156
    • /
    • 2007
  • In this paper, we focus on the fault detection and isolation(FDI) method for inertial navigation system with three two-degree of freedom dynamically tuned gyros(DTG) on orthogonal sensor configuration. we propose the FDI method which can detect the fault of each DTGs rather than the fault of each sensing axis. The proposed FDI method is separated into two FDI modules according to the fault magnitude in order to improve the reliability of fault detection information. For large fault detection, only instantaneous DTG measurement is used to detect a fault DTG within a short time. For small fault detection, the integrated value of DTG measurements are used to detect a fault DTG. It takes a more time to detect a fault but it serves more reliable fault detection information. Using the proposed FDI method with consideration of DTG fault characteristic, we could find out a fault DTG successfully.

  • PDF

Wafer-Level Fabrication of a Two-Axis Micromirror Driven by the Vertical Comb Drive (웨이퍼 레벨 공정이 가능한 2축 수직 콤 구동 방식 마이크로미러)

  • Kim, Min-Soo;Yoo, Byung-Wook;Jin, Joo-Young;Jeon, Jin-A;Park, Il-Heung;Park, Jae-Hyoung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.148-149
    • /
    • 2007
  • We present the design and fabrication prcoess of a two-axis tilting micromirror device driven by the electrostatic vertical comb actuator. A high aspect-ratio comb actuator is fabricated by multiple DRIE process in order to achieve large scan angle. The proposed fabrication process enables a mirror to be fabricated on the wafer-scale. By bonding a double-side polished (DSP) wafer and a silicon-on-insulator (SOI) wafer together, all actuators on the wafer are completely hidden under the reflectors. Nickel lines are embedded on a Pyrex wafer for the electrical access to numerous electrodes of mirrors. An anodic bonding step is implemented to contact electrical lines with ail electrodes on the wafer at a time. The mechanical angle of a fabricated mirror has been measured to be 1.9 degree and 1.6 degree, respectively, in the two orthogonal axes under driving voltages of 100 V. Also, a $8{\times}8$ array of micromirrors with high fill-factor of 70 % is fabricated by the same fabrication process.

  • PDF