Browse > Article
http://dx.doi.org/10.12989/gae.2022.30.6.525

A comparative study between the new model and the current model for T-shaped combined footings  

Garay-Gallegos, Jesus Rafael (Institute of Multidisciplinary Researches, Autonomous University of Coahuila)
Luevanos-Rojas, Arnulfo (Institute of Multidisciplinary Researches, Autonomous University of Coahuila)
Lopez-Chavarria, Sandra (Institute of Multidisciplinary Researches, Autonomous University of Coahuila)
Medina-Elizondo, Manuel (Institute of Multidisciplinary Researches, Autonomous University of Coahuila)
Aguilera-Mancilla, Gabriel (Institute of Multidisciplinary Researches, Autonomous University of Coahuila)
Garcia-Canales, Edith (Institute of Multidisciplinary Researches, Autonomous University of Coahuila)
Publication Information
Geomechanics and Engineering / v.30, no.6, 2022 , pp. 525-538 More about this Journal
Abstract
This paper presents a more general model for T-shaped combined footings that support two columns aligned on a longitudinal axis and each column provides an axial load and two orthogonal moments. This model can be applied to the following conditions: (1) without restrictions on its sides, (2) a restricted side and (3) two opposite sides restricted. This model considers the linear soil pressure. The recently published works have been developed for a restricted side and for two opposite sides restricted by Luévanos-Rojas et al. (2018a, b). The current model considers the uniform pressure distribution because the position of the resultant force coincides with the center of gravity of the surface of the footing in contact with the soil in direction of the longitudinal axis where the columns are located. This paper shows three numerical examples. Example 1 is for a T-shaped combined footing with a limited side (one column is located on the property boundary). Example 2 is for a T-shaped combined footing with two limited opposite sides (the two columns are located on the property boundary). Example 3 is for a T-shaped combined footing with two limited opposite sides, one column is located in the center of the width of the upper flange (b1/2=L1), and other column is located at a distance half the width of the strip from the free end of the footing (b2/2=b-L1-L). The main advantage of this work over other works is that this model can be applied to T-shaped combined footings without restrictions on its sides, a restricted side and two opposite sides restricted. It also shows the deficiencies of the current model over the new model.
Keywords
bending moments; bending shear; combined footings; punching shear; reinforced concrete;
Citations & Related Records
Times Cited By KSCI : 25  (Citation Analysis)
연도 인용수 순위
1 ACI 318S-14 (American Concrete Institute) (2014), Building Code Requirements for Structural Concrete and Commentary, Committee 318.
2 Agrawal, R. and Hora, M.S. (2012), "Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading", Struct. Eng. Mech., 44(1), 85-107. https://doi.org/10.12989/sem.2012.44.1.085.   DOI
3 Luevanos-Rojas, A. (2016b), "Un nuevo modelo para diseno de zapatas combinadas rectangulares de lindero con dos lados opuestos restringidos", Revista Alconpat, 6(2), 172-187. http://doi.org/10.21041/ra.v6i2.137.   DOI
4 Luevanos-Rojas, A., Barquero-Cabrero, J.D., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017), "A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models", Couple. Syst. Mech., 6(4), 417-437. https://doi.org/10.12989/csm.2017.6.4.417.   DOI
5 Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018a), "A new model for T-shaped combined footings Part I: Optimal dimensioning", Geomech. Eng., 14(1), 51-60. https://doi.org/10.12989/gae.2018.14.1.051.   DOI
6 Turedi, Y., Emirler, B., Ornek, M. and Yildiz, A. (2019), "Determination of the bearing capacity of model ring footings: Experimental and numerical investigations", Geomech. Eng., 18(1), 29-39. https://doi.org/10.12989/gae.2019.18.1.029.   DOI
7 Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., 9(3), 287-311. https://doi.org/10.12989/gae.2015.9.3.287.   DOI
8 Zhang, L., Zhao, M.H., Xiao, Y. and Ma, B.H. (2011), "Nonlinear analysis of finite beam resting on Winkler with consideration of beam-soil interface resistance effect", Struct. Eng. Mech., 38(5), 573-592. https://doi.org/10.12989/sem.2011.38.5.573.   DOI
9 Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585.   DOI
10 Anil, O, Akbas, S.O., BabagIray, S., Gel, A.C. and Durucan, C. (2017), "Experimental and finite element analyses of footings of varying shapes on sand", Geomech. Eng., 12(2), 223-238. https://doi.org/10.12989/gae.2017.12.2.223.   DOI
11 Bowles, J.E. (2001), Foundation Analysis and Design, McGraw-Hill, New York, U.S.A.
12 Chen, W.R., Chen, C.S and Yu, S.Y. (2011), "Nonlinear vibration of hybrid composite plates on elastic foundations", Struct. Eng. Mech., 37(4), 367-383. https://doi.org/10.12989/sem.2011.37.4.367.   DOI
13 Mohebkhah, A. (2017), "Bearing capacity of strip footings on a stone masonry trench in clay", Geomech. Eng., 13(2), 255-267. https://doi.org/10.12989/gae.2017.13.2.255.   DOI
14 Dezhkam, B. and Yaghfoori, A. (2018), "Soil foundation effect on the vibration response of concrete foundations using mathematical model", Comput. Concrete, 22(2), 221-225. https://doi.org/10.12989/cac.2018.22.2.221.   DOI
15 Shahin M.A. and Cheung E.M. (2011), "Stochastic design charts for bearing capacity of strip footings", Geomech. Eng., 3(2), 153-167. https://doi.org/10.12989/gae.2011.3.2.153.   DOI
16 Yanez-Palafox, J.A., Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2019), "Modeling for the strap combined footings Part II: Mathematical model for design", Steel Compos. Struct., 30(2), 109-121. https://doi.org/10.12989/scs.2019.30.2.109.   DOI
17 Luevanos-Rojas, A. (2014a), "Design of isolated footings of circular form using a new model", Struct. Eng. Mech., 52(4), 767-786. http://doi.org/10.12989/sem.2014.52.4.767.   DOI
18 Bensaid, I. and Kerboua, B. (2019), "Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations", Adv. Aircraft Spacecraft Sci., 6(3), 207-223. https://doi.org/10.12989/aas.2019.6.3.207.   DOI
19 Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018b), "A new model for T-shaped combined footings Part II: Mathematical model for design", Geomech. Eng., 14(1), 61-69. https://doi.org/10.12989/gae.2018.14.1.061.   DOI
20 Mohamed, F.M.O., Vanapalli, S.K. and Saatcioglu, M. (2013), "Generalized Schmertmann Equation for settlement estimation of shallow footings in saturated and unsaturated sands", Geomech. Eng., 5(4), 363-377. https://doi.org/10.12989/gae.2013.5.4.343.   DOI
21 Orbanich, C.J., Dominguez, P.N. and Ortega, N.F. (2012), "Strenghtening and repair of concrete foundation beams whit fiber composite materials", Mater. Struct., 45(11), 1693-1704. https://doi.org/10.1617/s11527-012-9866-6.   DOI
22 Rad, A.B. (2012), "Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads", Struct. Eng. Mech., 44(2), 139-161. https://doi.org/10.12989/sem.2012.44.2.139.   DOI
23 Luevanos-Rojas, A. (2014b), "Design of boundary combined footings of rectangular shape using a new model", Dyna, 81(188), 199-208. http://doi.org/10.15446/dyna.v81n188.41800.   DOI
24 Cure, E., Sadoglu, E., Turker, E. and Uzuner, B.A. (2014), "Decrease trends of ultimate loads of eccentrically loaded model strip footings close to a slope", Geomech. Eng., 6(5), 469-485. https://doi.org/10.12989/gae.2014.6.5.469.   DOI
25 ErzIn, Y. and Gul, T. O. (2013), "The use of neural networks for the prediction of the settlement of pad footings on cohesionless soils based on standard penetration test", Geomech. Eng., 5(6), 541-564. https://doi.org/10.12989/gae.2013.5.6.541.   DOI
26 Dixit, M.S. and Patil K.A. (2013), "Experimental estimate of Nγ values and corresponding settlements for square footings on finite layer of sand", Geomech. Eng., 5(4), 363-377. https://doi.org/10.12989/gae.2013.5.4.363.   DOI
27 Khatri, V.N., Debbarma, S.P., Dutta, R.K. and Mohanty, B. (2017), "Pressure-settlement behavior of square and rectangular skirted footings resting on sand", Geomech. Eng., 12(4), 689-705. https://doi.org/10.12989/gae.2017.12.4.689.   DOI
28 Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017), "A new mathematical model for design of square isolated footings for general case", Int. J. Innov. Comput. I., 13(4), 1149-1168.
29 Luevanos-Rojas, A. (2015), "Design of boundary combined footings of trapezoidal form using a new model", Struct. Eng. Mech., 56(5), 745-765. https://doi.org/10.12989/sem.2015.56.5.745.   DOI
30 Luevanos-Rojas, A. (2016a), "A comparative study for the design of rectangular and circular isolated footings using new models", Dyna, 83(196), 149-158.   DOI
31 Luevanos-Rojas, A., Faudoa-Herrera, J.G., Andrade-Vallejo, R.A. and Cano-Alvarez M.A. (2013), "Design of Isolated Footings of Rectangular Form Using a New Model", Int. J. Innov. Comput. I., 9(10), 4001-4022.
32 Maheshwari, P. and Khatri, S. (2012), "Influence of inclusion of geosynthetic layer on response of combined footings on stone column reinforced earth beds", Geomech. Eng., 4(4), 263-279. https://doi.org/10.12989/gae.2012.4.4.263.   DOI
33 Orbanich, C.J. and Ortega, N.F. (2013), "Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using Finite Differences Method", Struct. Eng. Mech., 45(2), 169-182. https://doi.org/10.12989/sem.2013.45.2.169.   DOI