• Title/Summary/Keyword: Two Systems

Search Result 18,417, Processing Time 0.061 seconds

Design of Simple-Structured Fuzzy Logic Systems for Segway-Type Mobile Robot

  • Yoo, Hyun-Ho;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.232-239
    • /
    • 2015
  • Studies on the control of the inverted pendulum type system have been widely reported. This is because it is a typical complex nonlinear system and may be a good model for verifying the performance of a proposed control system. In this paper, we propose the design of some fuzzy logic control (FLC) systems for controlling a Segway-type mobile robot, which is an inverted pendulum type system. We first derive a dynamic model of the Segway-type mobile robot and then analyze it in detail. Next, we propose the design of some FLC systems that have good performance for the control of any nonlinear system. Then, we design two conventional FLC systems for the position and balance control of the Segway-type mobile robot, and we demonstrate their usefulness through simulations. Next, we point out the possibility of simplifying the design process and reducing the computational complexity,, which results from the skew symmetric property of the fuzzy control rule tables. Finally, we design two other FLC systems for position and balance control of the Segway-type mobile robot. These systems have only one input variable in the FLC systems. Furthermore, we observe that they offer similar control performance to that of the conventional two-input FLC systems.

Method Controlling Two or More Sets of PMSM by One Inverter on a Railway Vehicle

  • Ito, Takuma;Inaba, Hiromi;Kishine, Keiji;Nakai, Mitsuki;Ishikura, Keisuke
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.207-214
    • /
    • 2014
  • If two or more Permanent Magnet Synchronous Motors (PMSM) can be controlled by one inverter, a train can be driven by less energy than the present Induction Motor (IM) drive system. First, this paper proposes a method for simulating the movement of wheels and a vehicle to develop a control method. Next, a method is presented for controlling two or more PMSMs by one inverter.

[ $H_{\infty}$ ] Control for a Class of Singularly Perturbed Nonlinear Systems via Successive Galerkin Approximation

  • Kim, Young-Joong;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.501-507
    • /
    • 2007
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ control of a class of singularly perturbed nonlinear systems with an exogenous disturbance, using the successive Galerkin approximation (SGA). The singularly perturbed nonlinear system is decomposed into two subsystems of a slow-time scale and a fast-time scale in the spirit of the general theory of singular perturbation. Two $H_{\infty}$ control laws are obtained to each subsystem by using the SGA method. The composite control law that consists of two $H_{\infty}$ control laws of each subsystem is designed. One of the purposes of this paper is to design the closed-loop $H_{\infty}$ composite control law for the singularly perturbed nonlinear systems via the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

A heuristic search on noninferior solutions to the Halkin-typed linear quantized optimal control problem with two performance functions

  • Munakata, Tsunehiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.772-776
    • /
    • 1988
  • In quantized control systems, the control values can take only given discrete (e.g. integer) values. In case of dealing with the control problem on the discrete-time, final-stage fixed, quantized control systems with multidimensional performance functions, the first thing, new definition on noninferior solutions in these systems is necessary because of their discreteness in state variables, and the efficient search for those solutions at final-stage is unavoidable for seeking their discrete-time optimal controls to these systems. In this paper, to the quantized control problem given by the formulation of Halkin-typed linear control systems with two performance functions, a new definition on noninferior solutions of this system control problem and a heuristic effective search on these noninferior solutions are stated. By use of these concepts, two definitions on noninferior solutions and the algorithm consisted of 8 steps and attained by geometric approaches are given. And a numerical example using the present algorithm is shown.

  • PDF

Simulation Analysis of Control Methods for Parallel Multi-Operating System constructed by the Same Output Power Converters

  • Ishikura, Keisuke;Inaba, Hiromi;Kishine, Keiji;Nakai, Mitsuki;Ito, Takuma
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.282-288
    • /
    • 2014
  • A large capacity power conversion system constructed by using two or more existing power converters has a lot of flexibility in how the power converters are used. However, at the same time, it has a problem of cross current flows between power converters. The cross current must be suppressed by controlling the system while miniaturizing the combination reactor. This paper focuses on two current control methods of a power conversion system constructed by using two power converters connected in parallel supplying the same power. In order to elucidate the control performance of cross current, each control method which are aimed at controlling cross current and not directly controlling it are examined in simulations.

Global Synchronization of Two Different Chaotic Systems via Nonlinear Control

  • Emadzadeh, Amir Abbas;Haeri, Mohammad
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.985-989
    • /
    • 2005
  • This paper presents chaos synchronization between two different chaotic systems using nonlinear control method. The proposed technique is applied to achieve chaos synchronization for the Lorenz and Rossler dynamical systems. Numerical simulations are also implemented to verify the results.

  • PDF

Performance Comparison of OFDM and FMT Systems under Jamming Environment (재밍 환경 하에서 OFDM과 FMT 시스템의 성능 비교)

  • Kim, Jong-Mann
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.100-106
    • /
    • 2007
  • In this paper, the performance of OFDM(Orthogonal Frequency Division Multiplexing) and FMT(Filtered Multi-tone) Systems is compared under jamming environment. Two systems are multi-carrier systems to improve data rates. Through the comparison of two systems under jamming environment, the characteristics and strong/weak points of each system are analyzed.

A Decoupling Method of Separable-Denominator Two-Dimensional Systems

  • Kawakami, Atsushi
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.633-636
    • /
    • 2000
  • The decoupling of the systems is to let the inputs and outputs correspond one to one, by performing the state feedback or the output feedback on the given systems. In this paper, we propose a method for decoupling the separable-denominator two-dimensional systems. And, we study about the realization dimension of the dynamical feedback and the dynamical feedforward performed for decoupling.

  • PDF

Optimal configurations for redundant two-degree of freedom sensor systems (2-자유도 중첩센서의 최적배치)

  • 정도형;이장규;박찬국;박흥원;정태호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.258-263
    • /
    • 1991
  • Optimal configurations for redundant TDOF (Two Degree Of Freedom) sensor systems are proposed. The determinant of error covariance matrix is used as the performance index, and optimal configurations for 2 TDOF sensor system and 3 TDOF sensor system are evaluated by minimizing the index.

  • PDF

ANALYSIS OF GAS-DYNAMIC EFFECTS IN COMPACT EXHAUST SYSTEMS OF SMALL TWO-STROKE ENGINES

  • Galindo, J.;Serrano, J.R.;Climent, H.;Tiseira, A.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.403-411
    • /
    • 2007
  • This article describes a methodology based on experiments and 1D modeling work related to the exhaust system analysis of a small two-stroke engine. The primary goal of this work was to understand how the design criteria of a compact exhaust system influenced the exhaust port pressure, since its evolution controls not only engine performance but also exhaust emissions. On the experimental side, a fully instrumented 50cc two-stroke engine was used to check the behavior of three different exhaust systems. A problem related to instantaneous pressure measurements in unsteady, hot flow was detected and solved during the study. To build the 1D model of the three exhaust systems, experimental information on the steady flow and the impulse test rigs was obtained under controlled conditions in specific facilities. Accurate comparisons between measured and calculated exhaust port instantaneous pressures were obtained from the following different exhaust system configurations: a straight duct, a tapered pipe and the three compact exhaust systems. The last step in the method used this model to analyze the pressure waves inside the exhaust system and detect the influence of the geometric parameters. The results should lead to improvements in the design process of complex compact exhaust systems in two-stroke engines.