• 제목/요약/키워드: Two Dimensional Channel Flow

검색결과 297건 처리시간 0.021초

레이놀즈응력모델을 이용한 난류의 고분자물질 첨가 저항감소현상에 대한 수치해석 (Numerical Analysis of Drag-Reducing Turbulent Flow by Polymer Injection with Reynolds Stress Model)

  • 고강훈;김광용
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2000
  • A modified low-Reynolds-number Reynolds stress model is developed for the calculation of drag-reducing turbulent flows induced by polymer injection. The results without polymer injection are compared with the results of direct numerical simulation to ensure the validity of the basic model. In case of drag reduction, profiles of mean velocity and Reynolds stress components, in two-dimensional channel flow, obtained with a proper value of viscosity ratio are presented and discussed. Computed mean velocity profile is in very good agreement with experimental data. And, the qualitative behavior of Reynolds stress components with the viscosity ratio is also reasonable.

굴곡형 흡입구에서의 유동 및 소음방사 해석 (A numerical study on the flow and noise radiation in curved intake)

  • 심인보;이덕주;안창수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.76-80
    • /
    • 2001
  • Unsteady compressible Euler equation is solved and the high-order, high-resolution numerical solver, physical boundary condition, adaptive nonlinear artificial dissipation model and conformal mapping are applied to computation of steady transonic flow and unsteady acoustics. The acoustic characteristics of axi-symmetric duct and two dimensional straight/S channel are studied and the computation results shows good agreements with linear analysis. In transonic case, local time stepping and canceling-the-residual techniques are used for convergence acceleration. The aspect of flow and acoustics in S-channel and the Pattern of noise radiation is changed by inflow Mach no. and static pressure at fan-face.

  • PDF

ER 유체의 채널유동에 대한 직접수치해석 (Direct Numerical Simulation of an Electro-Rheological Channel Flow)

  • 조상호;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제28권1호
    • /
    • pp.72-80
    • /
    • 2004
  • Steady flow of an ER (electro-rheological) fluid in a two-dimensional electrode channel is studied by using FEM. Hydrodynamic interactions between the particles and the fluid are calculated by solving the Navier-Stokes equation combined with the equation of motion for each particle, where the multi-body electrostatic interaction is described by using point-dipole model. Motion of the particles in the ER fluid is elucidated in conjunction with the mechanisms of the flow resistance and the increase of viscosity. The ER effects have been studied by varying the Mason number and volume fraction of particles. These parameters have an influence on the formation of the chains resulting in the changes of the fluid velocity and the effective viscosity of ER fluids.

부분 포물형 Navier-Stokes 방정식을 이용한 비압축성 이차원 박리유동 계산 (Calculation of two-dimensional incompressible separated flow using parabolized navier-stokes equations)

  • 강동진;최도형
    • 대한기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.755-761
    • /
    • 1987
  • 본 연구에서는 익형 위에 발생하는 박리기포 주위를 사용한 박리기포 주위 유 동해석에 목적을 두고, 원시변수(primitive variable)를 사용한 부분 포물형 Navier -Stokes 방정식을 사용하여 층류유동에 관한 간단한 기본계산을 통해 비교적 박리기포 가 큰 외부유동(external flow)에도 부분 포물형 방정식이 적용될 수 있음을 보이고자 한다.수치해법은 Galpin 등 이 이차원 관유동(channel flow)에 완전 Navier-Stokes 방정식의 해법으로 사용한 CELS(coupled equation line solver) 방법을 부분 포물형 방정식에 적합하게 수정하여 사용하였다.

상반류(물/공기) 유동한계에 관한 연구 (Counter-Current Flow Limit of a Vertical Two Phase (Water/Air) Flow)

  • 오율권;조상진;김상녕;이종원
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.308-322
    • /
    • 1991
  • 본 연구에서는 CCFL에 영향을 미치는 관의 크기, 길이, 주입구 형상 등 변화 에 대한 현상해석과 이의 영향을 고려한 관계식의 개발에 있다. 그러므로 본 실험에 서의 물의 주입량을 관에 수막(film)이 형성시킬 수 있는 유량으로 고정시킨 상태에서 공기의 유량을 증가시켜, CCFL이 발생하였을때 공기와 물의 유량을 측정하였다. 그 리고 관의 길이, 크기 그리고 물의 주입구 구조(예각, 둔간, 톱니, 다공)의 변화에 따 른 CCFL의 영향에 관하여 실험을 수행하였다.

산고래 온돌연도내의 유동분포에 관한 수치해석 (Numerical Analysis on the Flow Distribution in Ondol Flue Channel)

  • 민만기;이승우
    • 대한설비공학회지:설비저널
    • /
    • 제12권4호
    • /
    • pp.264-274
    • /
    • 1983
  • Two-dimensional jet flows into a couple of confined rectangular enclosures such as an Ondol flue channel and their flow distributions were analyzed by numerical graphics : rectangular space in one enclosure is vacated and the other has 8 rectangular small posts. Both enclosures have a protruded inlet nozzle and on outlet on its center line. Steady state incompressible laminar viscous flow was assumed. The primitive forms of Navier-Stokes equations and continuity equation in a cartesian coordinate system were solved numerically by the Marker and Cell method for Reynolds numbers of 5, 10, 20, 30 and 40. From the numerical graphics it was found that the flow regions in both enclosures were devided into tow parts ; one part was the jet flow localized in a narrow center region of the enclosure and the other part was the very slow recirculating flow occupying the rest of the flow region in the enclosures. However there were a little differences in the shapes of jet flow in both enclosures for Reynolds numbers of 5 and 10 and also in the shapes of recirculating flows in both enclosures for all Reynolds number. Also it was found that waving flow appeared right before the outlet at Reynolds number of 20 and more.

  • PDF

개수로 분류흐름에서의 특성분석 (Analysis of Characteristics for a Dividing Flow in Open Channels)

  • 박성수;이진우;조용식
    • 한국방재학회 논문집
    • /
    • 제9권2호
    • /
    • pp.53-57
    • /
    • 2009
  • 개수로에서 발생하게 되는 분류흐름에는 많은 특성들이 나타나게 된다. 특히, 지류부의 내측 벽면을 따라서 이차류 흐름이 나타나 토사나 오염물 등의 퇴적물 침전을 일으키는 분리구역이 발생하게 된다. 분류흐름에서 발생하는 분리구역의 특성을 연구하기 위해 상류흐름에서의 자유수면 및 유속을 계산할 수 있는 이차원 천수방정식 수치모델인 RMA2를 이용하였다. 수치모의 결과는 Hsu 등(2002)의 실험결과와 비교하여 잘 일치함을 알 수 있었다. 수치모의를 통해 유량비에 대한 분리구역의 크기 관계를 제시할 수 있었다. 그리고 분리구역의 크기를 줄이기 위해 본류와 지류가 만나는 모서리 지점을 곡선과 대각선으로 연결하여 유수흐름을 완만하게 만든 지형들을 제안하였다.

대칭 형태로 기울어진 와류 생성기를 이용한 열전달 시스템 수치 해석 (Numerical Analysis of Heat Transfer System Using a Symmetric Flexible Vortex Generator in a Poiseuille Channel Flow)

  • 김정현;박성군
    • 한국가시화정보학회지
    • /
    • 제18권1호
    • /
    • pp.67-73
    • /
    • 2020
  • Flexible structures have been adopted in heat transfer systems as vortex generators. The flexible vortex generators immersed in a flow show a self-sustained oscillatory motion, which enhances fluid mixing and heat transfer. In the present study, the vortex generators in a two-dimensional channel flow are numerically investigated, and they are symmetrically mounted on the upper and lower walls with an inclination angle. The momentum interaction and heat transfer between the flexible vortex generators and the surrounding fluid are considered by using an immersed boundary method. The inclination angle is one of the important factors in determining the flapping kinematics of the flexible vortex generators. The flapping amplitude increases as the inclination angle increases, thereby enhancing fluid mixing. The heat transfer is enhanced up to 80% comparing to the baseline channel flow.

Lattice Boltzmann 법을 이용한 Cross-Junction 채널 내의 droplet 유동에 관한 수치해석적 연구 (Numerical Study on the Droplet Flows in a Cross-Junction Channel Using the Lattice Boltzmann Method)

  • 박재현;서용권
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.407-410
    • /
    • 2006
  • This study describes a simulation of two-dimensional bubble forming and motion by the Lattice Boltzmann Method with the phase field equation. The free energy model is used to treat the interfacial force and deformation of binary fluids system, drawn into a T-junction the micro channel. A numerical simulation of a binary flow in a cross-junction channel is carried out by using the parallel computation method. The aim in this investigation is to examine the applicability of LBM to numerical analysis of binary fluid separation and motion in the micro channel.

  • PDF

Flow Investigations in the Crossover System of a Centrifugal Compressor Stage

  • Reddy, K. Srinivasa;Murty, G.V. Ramana;Dasgupta, A.;Sharma, K.V.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권1호
    • /
    • pp.11-19
    • /
    • 2010
  • The performance of the crossover system of a centrifugal compressor stage consisting of static components of $180^{\circ}$ U-bend, return channel vanes and exit ducting with a $90^{\circ}$ bend is investigated. This study is confined to the assessment of performance of the crossover system by varying the shape of the return channel vanes. For this purpose two different types of Return Channel Vanes (RCV1 and RCV2) were experimentally investigated. The performance of the crossover system is discussed in terms of total pressure loss coefficient, static pressure recovery coefficient and vane surface pressure distribution. The experimentation was carried out on a test setup in which static swirl vanes were used to simulate the flow at the exit of an actual centrifugal compressor impeller with a design flow coefficient of 0.053. The swirl vanes are connected to a mechanism with which the flow angle at the inlet of U-bend could be altered. The measurements were taken at five different operating conditions varying from 70% to 120% of design flow rate. On an overall assessment RCV1 is found to give better performance in comparison to RCV2 for different U-bend inlet flow angles. The performance of RCV2 was verified using numerical studies with the help of a CFD Code. Three dimensional sector models were used for simulating the flow through the crossover system. The turbulence was predicted with standard k-$\varepsilon$, 2-equation model. The iso-Mach contour plots on different planes and development of secondary flows were visualized through this study.