Browse > Article
http://dx.doi.org/10.3795/KSME-B.2004.28.1.072

Direct Numerical Simulation of an Electro-Rheological Channel Flow  

Cho, Sang-Ho (서울대학교 BK21 기계분야사업단)
Choi, Hyoung-Gwon (서울산업대학교 기계공학과)
Yoo, Jung-Yul (서울대학교 기계항공공학부)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.28, no.1, 2004 , pp. 72-80 More about this Journal
Abstract
Steady flow of an ER (electro-rheological) fluid in a two-dimensional electrode channel is studied by using FEM. Hydrodynamic interactions between the particles and the fluid are calculated by solving the Navier-Stokes equation combined with the equation of motion for each particle, where the multi-body electrostatic interaction is described by using point-dipole model. Motion of the particles in the ER fluid is elucidated in conjunction with the mechanisms of the flow resistance and the increase of viscosity. The ER effects have been studied by varying the Mason number and volume fraction of particles. These parameters have an influence on the formation of the chains resulting in the changes of the fluid velocity and the effective viscosity of ER fluids.
Keywords
Finite Element Method; Combined Formulation; DNS; Electro-Rheological Fluid; Effective Viscosity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adriani, P. M., & Gast, A. P., 1988, 'A Microscopic model of Electrorheology,' Phys. Fluids, Vol. 31, pp. 2757-2768   DOI
2 Klingenberg, D. J., Swol, F. Van, & Zukoski, C. F., 1989, 'Dynamic Simulation of Electrorheological Suspensions,' J. Chem. Physics, Vol. 91, pp. 7888-7895   DOI
3 Block, H., Kelly, J. P., 1988, 'Review Article: Electro-Rheology,' J Phys. D: Appl. Phys., Vol. 21, pp. 1661-1677   DOI   ScienceOn
4 Atkin, R. J., Xiao, S., & Bullough, W. A., 1999, 'Effect of Non-uniform Field Distribution on Steady Flows of an Electro-rheological Fluid,' J. Non-Newtonain Fluid Mechanics, Vol. 86, pp. 119-132   DOI   ScienceOn
5 Winslow, W. M., 1949, 'Induced Fibration of Suspensions,' J. Appl. Phys., Vol. 20, pp. 1137-1140   DOI
6 Patankar, N. A., Huang, P. Y., Ko, T., & Joseph, D. D., 2001, 'Lift-off a Single Particle in Newtonian and Viscoelastic Fluids by Direct Numerical Simulation,' J. Fluid Mech., Vol. 438, pp. 67-100   DOI   ScienceOn
7 Hartsock, D. L., Novak, R. F., & Chaundy, G. J., 1991, 'ER Fluid Requirements for Automotive Devices,' J. Rheology, Vol. 35, pp. 1305-1326   DOI
8 Abu-Jdayil, B., & Brunn, P.O., 1996, 'Effects of Electrode Morphology on the Slit Flow of an Electrorheological Fluid,' J. Non-Newtonian Fluid Mechanics, Vol. 63, pp. 45-61   DOI   ScienceOn
9 Abu-Jdayil, B., & Brunn, P.O., 1997, 'Study of the Flow Behavior of Electrorheological Fluids at Shear and Flow Mode,' Chemical Engineering and Processing, Vol. 36, pp. 281-289   DOI   ScienceOn
10 Choi, H. G., 2000, 'Splitting Method for the Combined Formulation of the Fluid-Particle Problem,' Comput. Methods Appl. Mech. Engrg., Vol. 190, pp. 1367-1378   DOI   ScienceOn
11 Barnes, H. A., Hutton, J. F., & Walters, K., 1989, An Introduction to Rheology, Elsevier Science Publishers B. V.
12 Hu, H. H. & Joseph, D. D., 1992, 'Direct Simulation of Fluid Particle Motions,' Theoret. Comput. Fluid Dynam., Vol. 3, pp. 285-306   DOI
13 Choi, H. G., & Joseph, D. D., 2001 'Fluidization by Lift of 300 Circular Particles in Plane Poiseuille Flow by Direct Numerical Simulation,' J. Fluid Mech., Vol. 438, pp. 101-128   DOI   ScienceOn
14 Hu, H. H., 1996, 'Direct Simulation of Flows of Solid-liquid Mixtures,' Int. J. Multiphase Flows, Vol. 22, pp. 335-352   DOI   ScienceOn
15 Wang, B., Liu, Y., & Xiao, Z., 2001, 'Dynamical Modelling of the Chain Structure Formation in Electrorheological Fluids,' Int. J. Engineering Science, Vol. 39, pp. 453-475   DOI   ScienceOn
16 Choi, H. G., Choi, H., & Yoo, J. Y., 1997, 'A Fractional Four-Step Finite Element Formulation of the Unsteady Incompressible Navier-Stokes Equations Using SUPG and Linear Equal-order Element Methods,' Comput. Methods Appl. Meck Engrg., Vol. 143, pp. 333-348   DOI   ScienceOn
17 Hesla, T. I., 1991, 'Combined Formulation of Fluid-Particle Problem,' (unpublished note)
18 Klingenberg, D. J., 1993, 'Simulation of the Dynamic Oscillatory Response of Electro-Rheological Suspensions,' J. Rheol., Vol. 37, pp. 199-214   DOI   ScienceOn
19 Yu, K. W., Jones, T., & Wan, K., 2000, 'Interparticle Force in Polydisperse Electrorheological Fluids,' Computer Physics Communications, Vol. 129, pp.177-184   DOI   ScienceOn
20 Klingenberg, D. J., Swol, V., & Zukoski, C. F., 1991, 'The Small Shear Rate Response of Electrorheological Suspensions,' J. Chem. Physics, Vol. 94, pp. 6160-6178   DOI
21 Klingenberg, D. J., Swol, V., & Zukoski, C. F., 1991, 'The Small Shear Rate Response of Electrorheological Suspensions,' J. Chem. Physics, Vol. 94, pp. 6160-6178   DOI
22 Marshall, L., Zukoski, C. F., & Goodwin, J. W., 1989, 'Effects of Electric Fields on the Rheology of Non-aqueous Concentrated Suspensions,' J. Chem. Soc. Faraday Trans., I 85, pp. 2785-2795   DOI   ScienceOn