DOI QR코드

DOI QR Code

Direct Numerical Simulation of an Electro-Rheological Channel Flow

ER 유체의 채널유동에 대한 직접수치해석

  • 조상호 (서울대학교 BK21 기계분야사업단) ;
  • 최형권 (서울산업대학교 기계공학과) ;
  • 유정열 (서울대학교 기계항공공학부)
  • Published : 2004.01.01

Abstract

Steady flow of an ER (electro-rheological) fluid in a two-dimensional electrode channel is studied by using FEM. Hydrodynamic interactions between the particles and the fluid are calculated by solving the Navier-Stokes equation combined with the equation of motion for each particle, where the multi-body electrostatic interaction is described by using point-dipole model. Motion of the particles in the ER fluid is elucidated in conjunction with the mechanisms of the flow resistance and the increase of viscosity. The ER effects have been studied by varying the Mason number and volume fraction of particles. These parameters have an influence on the formation of the chains resulting in the changes of the fluid velocity and the effective viscosity of ER fluids.

Keywords

References

  1. Winslow, W. M., 1949, 'Induced Fibration of Suspensions,' J. Appl. Phys., Vol. 20, pp. 1137-1140 https://doi.org/10.1063/1.1698285
  2. Hartsock, D. L., Novak, R. F., & Chaundy, G. J., 1991, 'ER Fluid Requirements for Automotive Devices,' J. Rheology, Vol. 35, pp. 1305-1326 https://doi.org/10.1122/1.550232
  3. Block, H., Kelly, J. P., 1988, 'Review Article: Electro-Rheology,' J Phys. D: Appl. Phys., Vol. 21, pp. 1661-1677 https://doi.org/10.1088/0022-3727/21/12/001
  4. Atkin, R. J., Xiao, S., & Bullough, W. A., 1999, 'Effect of Non-uniform Field Distribution on Steady Flows of an Electro-rheological Fluid,' J. Non-Newtonain Fluid Mechanics, Vol. 86, pp. 119-132 https://doi.org/10.1016/S0377-0257(98)00205-5
  5. Adriani, P. M., & Gast, A. P., 1988, 'A Microscopic model of Electrorheology,' Phys. Fluids, Vol. 31, pp. 2757-2768 https://doi.org/10.1063/1.866983
  6. Klingenberg, D. J., Swol, F. Van, & Zukoski, C. F., 1989, 'Dynamic Simulation of Electrorheological Suspensions,' J. Chem. Physics, Vol. 91, pp. 7888-7895 https://doi.org/10.1063/1.457256
  7. Klingenberg, D. J., Swol, V., & Zukoski, C. F., 1991, 'The Small Shear Rate Response of Electrorheological Suspensions,' J. Chem. Physics, Vol. 94, pp. 6160-6178 https://doi.org/10.1063/1.460402
  8. Klingenberg, D. J., Swol, V., & Zukoski, C. F., 1991, 'The Small Shear Rate Response of Electrorheological Suspensions,' J. Chem. Physics, Vol. 94, pp. 6160-6178 https://doi.org/10.1063/1.460403
  9. Klingenberg, D. J., 1993, 'Simulation of the Dynamic Oscillatory Response of Electro-Rheological Suspensions,' J. Rheol., Vol. 37, pp. 199-214 https://doi.org/10.1122/1.550441
  10. Wang, B., Liu, Y., & Xiao, Z., 2001, 'Dynamical Modelling of the Chain Structure Formation in Electrorheological Fluids,' Int. J. Engineering Science, Vol. 39, pp. 453-475 https://doi.org/10.1016/S0020-7225(00)00054-9
  11. Yu, K. W., Jones, T., & Wan, K., 2000, 'Interparticle Force in Polydisperse Electrorheological Fluids,' Computer Physics Communications, Vol. 129, pp.177-184 https://doi.org/10.1016/S0010-4655(00)00105-3
  12. Hesla, T. I., 1991, 'Combined Formulation of Fluid-Particle Problem,' (unpublished note)
  13. Hu, H. H. & Joseph, D. D., 1992, 'Direct Simulation of Fluid Particle Motions,' Theoret. Comput. Fluid Dynam., Vol. 3, pp. 285-306 https://doi.org/10.1007/BF00717645
  14. Choi, H. G., & Joseph, D. D., 2001 'Fluidization by Lift of 300 Circular Particles in Plane Poiseuille Flow by Direct Numerical Simulation,' J. Fluid Mech., Vol. 438, pp. 101-128 https://doi.org/10.1017/S0022112001004177
  15. Hu, H. H., 1996, 'Direct Simulation of Flows of Solid-liquid Mixtures,' Int. J. Multiphase Flows, Vol. 22, pp. 335-352 https://doi.org/10.1016/0301-9322(95)00068-2
  16. Choi, H. G., Choi, H., & Yoo, J. Y., 1997, 'A Fractional Four-Step Finite Element Formulation of the Unsteady Incompressible Navier-Stokes Equations Using SUPG and Linear Equal-order Element Methods,' Comput. Methods Appl. Meck Engrg., Vol. 143, pp. 333-348 https://doi.org/10.1016/S0045-7825(96)01156-5
  17. Choi, H. G., 2000, 'Splitting Method for the Combined Formulation of the Fluid-Particle Problem,' Comput. Methods Appl. Mech. Engrg., Vol. 190, pp. 1367-1378 https://doi.org/10.1016/S0045-7825(00)00164-X
  18. Patankar, N. A., Huang, P. Y., Ko, T., & Joseph, D. D., 2001, 'Lift-off a Single Particle in Newtonian and Viscoelastic Fluids by Direct Numerical Simulation,' J. Fluid Mech., Vol. 438, pp. 67-100 https://doi.org/10.1017/S0022112001004104
  19. Barnes, H. A., Hutton, J. F., & Walters, K., 1989, An Introduction to Rheology, Elsevier Science Publishers B. V.
  20. Marshall, L., Zukoski, C. F., & Goodwin, J. W., 1989, 'Effects of Electric Fields on the Rheology of Non-aqueous Concentrated Suspensions,' J. Chem. Soc. Faraday Trans., I 85, pp. 2785-2795 https://doi.org/10.1039/F19898502785
  21. Abu-Jdayil, B., & Brunn, P.O., 1996, 'Effects of Electrode Morphology on the Slit Flow of an Electrorheological Fluid,' J. Non-Newtonian Fluid Mechanics, Vol. 63, pp. 45-61 https://doi.org/10.1016/0377-0257(95)01416-0
  22. Abu-Jdayil, B., & Brunn, P.O., 1997, 'Study of the Flow Behavior of Electrorheological Fluids at Shear and Flow Mode,' Chemical Engineering and Processing, Vol. 36, pp. 281-289 https://doi.org/10.1016/S0255-2701(97)00002-0