• Title/Summary/Keyword: Two Degree-of Freedom Controller

Search Result 176, Processing Time 0.036 seconds

Robust control system design for a flexible arm by a two-degree-of-freedom compensator

  • Shimomoto, Y.;Kobayashi, T.;Miyaura, S.;Ishimatsu, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.105-108
    • /
    • 1993
  • This paper is concerned with a two-degree-offreedom control system design for a flexible arm, a two-degree-of-frecdom control system can achieve a robust stability specification and a control performance specification independently. By this property we improve the control performance with maintaining the same robust stability level as that of the onc-dcgree-of-freedom control system. At First we design a two-degree-of-fteedom control system which includes a feedforward controller and a feedback controller. The feedforward controller can be given by specifying a transfer function of a dcsired closed-loop model. We obtain a feedback controller by solving a mixed sensitivity problem. Several numerical results show that two-degree-of-freedom control systems acheive a better control performance than that of one-degree-of-freedom control systems.

  • PDF

Performance/Robustness Improvement of i-PID with Two-Degree-of-Freedom Controller (2자유도를 가지는 지적 PID 제어기를 이용한 시스템의 성능향상)

  • Choe, Yeon-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.927-934
    • /
    • 2017
  • This paper is concerned with applicability of two-degree-of-freedom controllers to the recently suggested i-PID controllers, in which unknown parts of the plant are taken into account without any modeling procedure. First, i-PID controller with two-degree-of-freedom is applied to a specific model, called Anisochronic model, to confirm the usefulness of this method. Second, using the original examples of i-PID controllers, it is confirmed that performance/robustness of system are to be improved due to two-degree-of-freedom, especially when the input changes suddenly. It is seen that as the desired robustness increases the optimal value of two-degree-of-freedom parameter ${\alpha}_A$ would be negative. It is checked and verified that if this value was limited to 1 or less as is generally known, performance would be degraded.

Control System Design for the Focus Servo System of DVD Drive (DVD 드라이브의 포커스 서보 시스템 제어기 설계)

  • 한기봉;이시복
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.49-56
    • /
    • 2001
  • In this paper, two plant models, of which one is newly developed and the other one is the conventional one, of the focus servo system of DVD drive are presented and a two-degree-of freedom controller consisted of Inverse dynamics feedforward and LQG/LTR feedback controller is designed. The newly developed plant model is used to design the feedforward controller and the conventional model is used for the design of feedback controller. The output of newly developed model is the displacement of objective lens and the output of conventional model is the focus error of the DVD focus servo system. The displacement of the objective lens is estimated by the dynamics model of the DVD focus servo system. The disturbance rejection performance of the two-degree-of freedom controller is compared with that of an LQG/LTR one.

  • PDF

Two Degree of Freedom Robust Controller Design of a Seeker Scan-Loop (탐색기 주사루프의 2자유도 강인제어기 설계)

  • Lee, Ho-Pyeong;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.157-165
    • /
    • 1995
  • The new formulation of designing the two degree of freedom(TDF) robust controller is proposed using $H_{\infty}$optimization and model matching method. In this formulation the feedback controller and feedforward controller are designed in a single step using $H_{\infty}$optimization procedure. Roughly speaking, the feedback controller is designed to meet robust stability and disturbance rejection specifications, while the feedforward controller is used to improve the robust model matching properties of the closed loop system. The proposed formulation will be illustrated and evaluated on a seeker scan-loop. And the performances of TDF robust controller are compared with those of the $H_{\infty}$ controller designed using Loop Shaping Design Procedure proposed by McFarlane and Glover.lover.

  • PDF

The Design of 2-DOF Controller with Robust Tracking Performance through Feedforward Compensation (전방향 보상을 통한 강건추종 성능을 갖는 2-자유도 제어기 설계)

  • 윤장희;조창호;이상철;조도현;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.421-421
    • /
    • 2000
  • In this paper, robust two-degree-of-freedom controller for satellite antenna system which tracks reference signal is designed. Two-degree-of-freedom controller consists of a prefilter and a feedback controller to solve trade-off between robust stability and command response. The feedback controller is designed from specifications like stability, disturbance rejection and robustness via H$_{\infty}$ design technique. In the sequel, H$_2$ optimal prefilter is introduced to improve the command response. This suggests a two-step design, with different types of performance specifications at each stage. In practical problems, this may easily lead to a prefilter of unacceptably high order. In order to avoid high order prefilter we use a particular structure in which both the prefilter and the feedback controller share the same dynamics. H$_2$-prefilter technique proposed in this paper is verified by simulation.

  • PDF

Robust $H^{\infty}$ Performance Controller Design with Parameter Uncertainty and Unmodeled Dynamics (파라미터 불확실성 및 모델 불확실성에 대한 $H^{\infty}$ 견실성능 제어기 설계)

  • Lee, Kap-Rai;Oh, Do-Chang;Park, Hong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 1997
  • The method of designing robust two degree of freedom(2 DOF) controllers for linear systems with parameter uncertainties and unmodeled dynamics is presented in this paper. Robust performance condition that accounts for robust model matching of closed loop system and disturbance rejection is derived. Using the robust performance condition, the feedback controller is designed to meet robust stability and disturbance rejection specifications, while prefilter is used to improve the robust model matching properties. The $H^{\infty}$ and $\mu$ controller for six degree of freedom vehicle with parameter variations are designed and compared. Simulations for hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.

  • PDF

Two Degree-of-Freedom $H_{\infty}$ Controller Design and Simulation For the Lateral Control of the Vehicle (차량 횡 방향 제어를 위한 2 자유도 $H_{\infty}$제어기 설계 및 모의실험)

  • 장재필;정길도
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.112-112
    • /
    • 2000
  • The aim of this paper is to design a two degree-of-freedom H$_{\infty}$ controller for lateral control of the vehicle. The object of this controller is to track the centerline of the reference lane. The controller is splited into two parts, feedback and prefilter. The feedback part is for both robust stability and disturbance attenuation, while the prefilter is for improving the robust tracking properties of closed loop system. This paper is consist of preface, background theory, dynamics of vehicle, controller design and computer simulation.ter simulation.

  • PDF

Linear Motor Current Control for a Force Generator (운동용 힘 발생기를 위한 리니어 모터의 전류제어)

  • Lee, Se-Han
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • This research dealt with a two-degree-of-freedom controller which was used for 2-dimensional force generator based on an linear motor. The gain margin of the controller may be reduced when the time constant is near to the sampling time of a discrete controller. In case of low gain controller, it cannot satisfy the control performance. A two-degree-of-freedom controller based on PI-control was proposed. It can manage performance and stability respectively. It also had a kind of a feed-forward control. This scheme can not only lessen gain of conventional PI controller in order to stability but also obtain high tracking performance.

Wiener-Hopf Design of the Two-Degree-of-Freedom Controller for the Standard Model (표준 모델의 2자유도 위너-호프 제어기 설계)

  • Jo, Yong-Seok;Choe, Gun-Ho;Park, Gi-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.102-110
    • /
    • 2000
  • In this paper, Wiener-Hopf design of the two-degree-of-freedom(2DOF) controller configuration is treated for the standard plant model. It is shown that the 2DOF structure makes it possible to treat the design of feedback properties and reference tracking problem separately. Wiener-Hopf factorization technique is used to obtain the optimal controller which minimizes a given quadratic cost index. The class of all stabilizing controllers that yield finite cost index is also characterized. An illustrative example is given for the step reference tracking problem which can not be treated by the conventional H2 controller formula.

  • PDF

Two-degree-of freedom $H_{\infty}$ control of a seeker scan loop using normalized coprime factorization (정규화 소인수분해를 이용한 탐색기 주사루프의 2자유도 $H_{\infty}$ 제어)

  • Lee, H.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.102-109
    • /
    • 1997
  • A two-degree-of freedom (TDF) $H_{\infty}$controller for a seeker scan loop is presented for the purpose of improving scanning performances. The perturbed plant model is characterized via the normalized coprime factorization. The TDF $H_{\infty}$controller is designed based on the loop shaping design procedure and model matching approach, and its performances are evaluated and compared with those of a previous work. It is demonstrated that the proposed TDF $H_{\infty}$controller is more effective to the control of the seeker scan loop than the previous controller.oller.

  • PDF