• Title/Summary/Keyword: Twin-scale

Search Result 69, Processing Time 0.022 seconds

A study on the development of a ship-handling simulation system based on actual maritime traffic conditions (선박조종 시뮬레이터를 이용한 연안 해역 디지털 트윈 구축에 연구)

  • Eunkyu Lee;Jae-Seok Han;Kwang-Hyun Ko;Eunbi Park;Kyunghun Park;Seong-Phil Ann
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.200-201
    • /
    • 2023
  • Digital twin technology is used in various fields as a method of creating a virtual world to minimize the cost of solving problems in the real world, and is also actively used in the maritime field, such as large-scale systems such as ships and offshore plants. In this paper, we tried to build a digital twin of coastal waters using a ship-handling simulator. The digital twin of the coastal waters developed in this way can be used to safely manage Korea's coastal waters, where maritime traffic is complicated, by providing a actual maritime traffic data. It can be usefully used to develop and advance technologies related to maritime autonomous surface ships and intelligent maritime traffic information services in coastal waters. In addition, it can be used as a 3D-based monitoring equipment for areas where physical monitoring is difficult but real-time maritime traffic monitoring is necessary, and can provide functions to safely manage maritime traffic situations such as aerial views of ports/control areas, bridge views/blind sector views of ships in operation.

  • PDF

Aerodynamic Characteristics of Long-Span Bridges under Actively Generated Turbulences (능동 난류 생성을 통한 장대 교량의 공력 특성 비교)

  • Lee, Seungho;Kwon, Soon-Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.341-349
    • /
    • 2011
  • The main purpose of this study is to investigate the affect of various turbulence properties on aerodynamic characteristics of twin box bridge section. To achieve this goal, active turbulence generator which successfully simulated various target turbulences was developed in the wind tunnel. From the wind tunnel tests, turbulence integral length scale did not affect on the aerodynamic forces and flutter derivatives except for the $A_1^*$ curve. Turbulence intensity gave slight effect on the unsteady aerodynamic force, but turbulence integral length scale did not affect the self-excited forces except vertical direction component.

Full-scale study of wind loads on roof tiles and felt underlay and comparisons with design data

  • Robertson, A.P.;Hoxey, R.P.;Rideout, N.M.;Freathy, P.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.495-510
    • /
    • 2007
  • Wind pressure data have been collected on the tiled roof of a full-scale test house at Silsoe in the UK. The tiled roof was of conventional UK construction with a batten-space and bitumen-felt underlay beneath the interlocking concrete tiles. Pressures were monitored on the outer surface of selected tiles, at several locations within the batten-space, and beneath the underlay. Data were collected both with and without ventilator tiles installed on the roof. Little information appears to exist on the share of wind load between tiles and underlays which creates uncertainty in the design of both components. The present study has found that for the critical design case of maximum uplifts it would be appropriate to assign 85% of the net roof load to the tiles and 15% to the underlay when an internal pressure coefficient of -0.3 is used, and to assign 60% to the tiles and 50% to the underlay when an internal pressure coefficient of +0.2 is assumed (an element of design conservatism is inherent in the apparent 110% net loading indicated by the latter pair of percentage values). These findings indicate that compared with loads implied by BS 6399-2, UK design loads for underlay are currently conservative by 25% whilst tile loads are unconservative by around 20% in ridge and general regions and by around 45% in edge regions on average over roof slopes of $15^{\circ}-60^{\circ}$.

A Basic Study of Fuel 2-staging Y-jet Atomizer to Reduce NOx in Liquid Fuel Burner (액체 연료용 버너에서 NOx 저감을 위한 연료2단 분사 Y-jet 노즐에 관한 기초연구)

  • Song, Si-Hong;Lee, Gi-Pung;Kim, Hyeok-Je;Park, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1616-1623
    • /
    • 2001
  • A basic experimental study has been carried out to find out the design parameters of fuel 2-staging atomizers in order to reduce nitrogen oxides(NOx) rate emitted from the steam boilers used the liquid fuel. The heavy fuel oil(B-Coil) and fuel 2-staging Y-jet twin-fluid atomizers were adopted in this study. The results of this paper were obtained from the real as well as the model scale atomizers. In the case of model atomizers test, NOx reduction rate was strongly dependent on the staged fuel rate, but it was weakly dependent on the injection hole arrangement and air swirl conditions. The real scale atomizers was designed and manufactured on the base of these test results, and those was mounted and operated in the real boiler generates 185 ton steam per an hour. The reduction rate of the model and real plant was reached 10∼30% of base NOx by atomizers. but dust was sharply increased in the low O$_2$combustion region of the real plant.

Development of Animal Liquid Manure Field Spreader Suited to Small Scale Crop Production Farms (소규모영농에 적합한 가축분뇨액비살비살포기 개발)

  • Choe, K.J.;Oh, K.Y.;Ryu, B.K.;Lee, S.H.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.3
    • /
    • pp.151-160
    • /
    • 2006
  • For even distribution of liquid manure in the field, a boom nozzle type spreader was designed and studied to determined its suitability for small scale crop production farms. Boom nozzle type spreader was compared in the impact triple nozzle and impact single nozzle type spreader. Spreading uniformity of the boom nozzle type liquid manure spreader showed 5.2% (C.V.) and impact single nozzle type spreader showed 6.9% (C.V.). The spreading uniformity of the impact triple nozzle type spreader was quite uneven, therefore, the spreader could be modified as twin nozzle for spreading in orchard farm. The wheel axle height adjustable type liquid manure spreader has higher the stability and it considered much useful on the hilly agricultural land.

  • PDF

Aerodynamic characteristics investigation of Megane multi-box bridge deck by CFD-LES simulations and experimental tests

  • Dragomirescu, Elena;Wang, Zhida;Hoftyzer, Michael S.
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.161-184
    • /
    • 2016
  • Long-span suspension bridges have evolved through the years and with them, the bridge girder decks improved as well, changing their shapes from standard box-deck girders to twin box and multi-box decks sections. The aerodynamic characteristics of the new generation of twin and multiple-decks are investigated nowadays, to provide the best design wind speeds and the optimum dimensions such bridges could achieve. The multi-box Megane bridge deck is one of the new generation bridge decks, consisting of two side decks for traffic lanes and two middle decks for railways, linked between them with connecting beams. Three-dimensional CFD simulations were performed by employing the Large Eddy Simulation (LES) algorithm with a standard Smagorinsky subgrid-scale model, for $Re=9.3{\times}10^7$ and angles of attack ${\alpha}=-4^{\circ}$, $-2^{\circ}$, $0^{\circ}$, $2^{\circ}$ and $4^{\circ}$. Also, a wind tunnel experiment was performed for a scaled model, 1:80 of the Megane bridge deck section, for $Re=5.1{\times}10^5$ and the aerodynamic static coefficients were found to be in good agreement with the results obtained from the CFD-LES model. However the aerodynamic coefficients determined individually, from the CFD-LES model, for each of the traffic and railway decks of the Megane bridge, varied significantly, especially for the downstream traffic deck. Also the pressure distribution and the effect of the spacing between the connecting beams, on the wind speed profiles showed a slight increase in turbulence above the downstream traffic and railway decks.

A Finite Element Heat Transfer Analysis with Coupling of Roll and Molten Metal in Direct Rolling Process (직접압연공정에 있어서 롤과 용탕을 연계한 유한요소 열전도해석)

  • 김영도;강충길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.946-957
    • /
    • 1994
  • In the steel industries, direct rolling process for production of strip from molten metal has been investigated to simplify processes, to minimize energy consumption, and to improve quality of the strip. In this study, two kinds of practicable scale cooling rollers are proposed. And heat transfer analysis of pool region and cooling roller considering flow of molten metal and roll rotation respectively using the finite element method are performed to obtain the proper initial condition and to observe cooling characteristics of cooling roller. From the results, variations of solidification final points and temperature distribution in roller are observed quantitatively according to roll rotation.

Numerical investigation of mechanical properties of nanowires: a review

  • Gu, Y.T.;Zhan, H.F.;Xu, Xu
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.115-129
    • /
    • 2012
  • Nanowires (NWs) have attracted intensive researches owing to the broad applications that arise from their remarkable properties. Over the last decade, immense numerical studies have been conducted for the numerical investigation of mechanical properties of NWs. Among these numerical simulations, the molecular dynamics (MD) plays a key role. Herein we present a brief review on the current state of the MD investigation of nanowires. Emphasis will be placed on the FCC metal NWs, especially the Cu NWs. MD investigations of perfect NWs' mechanical properties under different deformation conditions including tension, compression, torsion and bending are firstly revisited. Following in succession, the studies for defected NWs including the defects of twin boundaries (TBs) and pre-existing defects are discussed. The different deformation mechanism incurred by the presentation of defects is explored and discussed. This review reveals that the numerical simulation is an important tool to investigate the properties of NWs. However, the substantial gaps between the experimental measurements and MD results suggest the urgent need of multi-scale simulation technique.

The Effect of the Y-jet Nozzle Exit Orifice Shape on Asymmetric Spray (Y-jet 노즐의 출구오리피스 형상이 비대칭 분무에 미치는 영향)

  • Baik, Gwang Yeol;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • Y-jet nozzle has a wide fuel flow rate range and turn-down ratio, thus, it is used in industrial boilers, furnace and agricultural atomizer. However, it has asymmetrical spray characteristics due to the nozzle design factors. Therefore, in this study, asymmetric spraying characteristics of the elliptical Y-jet nozzle was studied by using the lab-scale spray apparatus. As a result, the elliptical Y-jet nozzle had lower gas mass flow rate than circular Y-jet nozzle at same gas pressure, because of bigger shear stress due to the wider inner surface at the elliptical Y-jet nozzle. Larger SMD was measured on the elliptical Y-jet nozzle than the circular Y-jet nozzle. When SMD was measured in the X_Axis direction at the same gas mass flow rate, the elliptical Y-jet nozzle with an aspect ratio of 2:1 showed greater asymmetry than the others.

Representation of small passenger ferry maneuvering motions by practical modular model

  • Wicaksono, Ardhana;Hashimoto, Naoya;Takahashi, Tomoyasu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.57-64
    • /
    • 2021
  • Maneuvering motions of a ship in calm water are studied through the concept of MMG model. Governing forces are defined by the use of available empirical formulae that require only main ship particulars as input variables. In order to validate the calculation tool, a full-scale sea experiment was carried out in Osaka Bay using a 17-m twin-screw passenger ferry. Test execution and data measurement were performed through the utilization of an autopilot control unit and satellite compass. The result of a straight running test confirms the acceptable accuracy in addressing the surge motion problem. Reasonable agreement between simulation and experiment is also confirmed for 5°/5° and 10°/10° zig-zag tests despite the strong environmental disturbance. The current model can generally represent the subject ship maneuvering motions and is promising for the application to other ship hulls.