Browse > Article
http://dx.doi.org/10.12989/imm.2012.5.2.115

Numerical investigation of mechanical properties of nanowires: a review  

Gu, Y.T. (School of Engineering Systems, Queensland University of Technology)
Zhan, H.F. (School of Engineering Systems, Queensland University of Technology)
Xu, Xu (School of Mathematics, Jilin University)
Publication Information
Interaction and multiscale mechanics / v.5, no.2, 2012 , pp. 115-129 More about this Journal
Abstract
Nanowires (NWs) have attracted intensive researches owing to the broad applications that arise from their remarkable properties. Over the last decade, immense numerical studies have been conducted for the numerical investigation of mechanical properties of NWs. Among these numerical simulations, the molecular dynamics (MD) plays a key role. Herein we present a brief review on the current state of the MD investigation of nanowires. Emphasis will be placed on the FCC metal NWs, especially the Cu NWs. MD investigations of perfect NWs' mechanical properties under different deformation conditions including tension, compression, torsion and bending are firstly revisited. Following in succession, the studies for defected NWs including the defects of twin boundaries (TBs) and pre-existing defects are discussed. The different deformation mechanism incurred by the presentation of defects is explored and discussed. This review reveals that the numerical simulation is an important tool to investigate the properties of NWs. However, the substantial gaps between the experimental measurements and MD results suggest the urgent need of multi-scale simulation technique.
Keywords
mechanical properties; nanowires; molecular dynamic simulation; defects; surface effects;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ji, C. and Park, H. (2006a), "Geometric effects on the inelastic deformation of metal nanowires", Appl. Phys. Lett., 89(18), 181916.
2 Ji, C. and Park, H. (2007), "The coupled effects of geometry and surface orientation on the mechanical properties of metal nanowires", Nanotechnology, 18(30), 305704.
3 Ji, C. and Park, H.S. (2006b), "Geometric effects on the inelastic deformation of metal nanowires", Appl. Phys. Lett., 89(18), 181916.
4 Jiang, S., Zhang, H., Zheng, Y. and Chen, Z. (2009), "Atomistic study of the mechanical response of copper nanowires under torsion", J. Phys. D. Appl. Phys., 42(13), 135408.   DOI   ScienceOn
5 Jiang, S., Zhang, H., Zheng, Y. and Chen, Z. (2010), "Loading path effect on the mechanical behaviour and fivefold twinning of copper nanowires", J. Phys. D. Appl. Phys., 43(33), 335402.   DOI   ScienceOn
6 Jiang, W. and Batra, R. (2009), "Molecular statics simulations of buckling and yielding of gold nanowires deformed in axial compression", Acta Mater., 57(16), 4921-4932.   DOI   ScienceOn
7 Jing, G., Duan, H., Sun, X., Zhang, Z., Xu, J., Li, Y., Wang, J. and Yu, D. (2006), "Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy", Phys. Rev. B, 73(23), 235409.   DOI
8 Jing, Y., Meng, Q. and Gao, Y. (2009), "Molecular dynamics simulation on the buckling behavior of silicon nanowires under uniaxial compression", Comput. Mater. Sci., 45(2), 321-326.   DOI   ScienceOn
9 Koh, A. and Lee, H. (2006), "Shock-induced localized amorphization in metallic nanorods with strain-ratedependent characteristics", Nano Lett., 6(10), 2260-2267.   DOI   ScienceOn
10 Komanduri, R., Chandrasekaran, N. and Raff, L. (2001), "Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel", Int. J. Mech. Sci., 43(10), 2237-2260.   DOI   ScienceOn
11 Leach, A.M., McDowell, M. and Gall, K. (2007), "Deformation of top down and bottom up silver nanowires", Adv. Funct. Mater., 17(1), 43-53.   DOI   ScienceOn
12 Liang, W. and Zhou, M. (2003), "Size and strain rate effects in tensile deformation of Cu nanowires", Nanotechnology, 2, 452-455.
13 Liang, W. and Zhou, M. (2004), "Response of copper nanowires in dynamic tensile deformation", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 218(6), 599-606.   DOI
14 Liang, W., Zhou, M. and Ke, F. (2005), "Shape memory effect in Cu nanowires", Nano Lett., 5(10), 2039-2043.   DOI   ScienceOn
15 Lim, C., Li, C. and Yu, J. (2009), "The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams", Interact. Multiscale Mech., 2(3), 223-233.   DOI
16 Lin, Y. and Pen, D. (2007), "Analogous mechanical behaviors in and directions of Cu nanowires under tension and compression at a high strain rate", Nanotechnology, 18(39), 395705.   DOI   ScienceOn
17 Marszalek, P.E., Greenleaf, W.J., Li, H., Oberhauser, A.F. and Fernandez, J.M. (2000), "Atomic force microscopy captures quantized plastic deformation in gold nanowires", Proceedings of the National Academy of Sciences, 97(12), 6282.   DOI   ScienceOn
18 McDowell, M., Leach, A. and Gall, K. (2008), "Bending and tensile deformation of metallic nanowires", Model. Simul. Mater. Sc., 16(4), 045003.   DOI   ScienceOn
19 Miller, R. and Shenoy, V. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139-147.   DOI   ScienceOn
20 Ni, H., Li, X. and Gao, H. (2006), "Elastic modulus of amorphous SiO nanowires", Appl. Phys. Lett., 88(4), 043108.   DOI   ScienceOn
21 Olsson, P.A.T. and Park, H.S. (2011), "Atomistic study of the buckling of gold nanowires", Acta Mater., 59(10), 3883-3894.   DOI   ScienceOn
22 Park, H., Gall, K. and Zimmerman, J. (2006a), "Deformation of FCC nanowires by twinning and slip", J. Mech. Phys. Solids, 54(9), 1862-1881.   DOI   ScienceOn
23 Park, H. and Klein, P. (2007), "Surface cauchy-born analysis of surface stress effects on metallic nanowires", Phys. Rev. B, 75(8), 85408.   DOI
24 Park, H.S., Gall, K. and Zimmerman, J.A. (2005), "Shape memory and pseudoelasticity in metal nanowires", Phys. Rev. Lett., 95(25), 255504.   DOI
25 Park, H., Klein, P. and Wagner, G. (2006b), "A surface cauchy-born model for nanoscale materials", Int. J. Numer. Meth. Eng., 68(10), 1072-1095.   DOI   ScienceOn
26 Park, H.S. (2006), "Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires", Nano Lett., 6(5), 958-962.   DOI   ScienceOn
27 Park, H.S., Cai, W., Espinosa, H.D. and Huang, H. (2009), "Mechanics of crystalline nanowires", MRS Bull., 34(3), 178-183.   DOI   ScienceOn
28 Park, H.S. and Ji, C. (2006), "On the thermomechanical deformation of silver shape memory nanowires", Acta Mater., 54(10), 2645-2654.   DOI   ScienceOn
29 Park, H.S. and Zimmerman, J.A. (2005), "Modeling inelasticity and failure in gold nanowires", Phys. Rev. B, 72(5), 54106.   DOI
30 Rabkin, E., Nam, H.S. and Srolovitz, D. (2007), "Atomistic simulation of the deformation of gold nanopillars", Acta Mater., 55(6), 2085-2099.   DOI   ScienceOn
31 Richter, G., Hillerich, K., Gianola, D.S., Mo nig, R., Kraft, O. and Volkert, C.A. (2009), "Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition", Nano Lett., 9(8), 3048-3052.   DOI   ScienceOn
32 Sansoz, F., Huang, H. and Warner, D.H. (2008), "An atomistic perspective on twinning phenomena in nanoenhanced fcc metals", JOM J. Mineral Metal. Mater. Soc., 60(9), 79-84.   DOI   ScienceOn
33 Setoodeh, A.R., Attariani, H. and Khosrownejad, M. (2008), "Nickel nanowires under uniaxial loads: A molecular dynamics simulation study", Comp. Mater. Sci., 44(2), 378-384.   DOI   ScienceOn
34 Shim, H.W., Zhou, L., Huang, H. and Cale, T.S. (2005), "Nanoplate elasticity under surface reconstruction", Appl. Phys. Lett., 86(15), 151912.   DOI   ScienceOn
35 Streitz, F., Cammarata, R. and Sieradzki, K. (1994), "Surface-stress effects on elastic properties. I. Thin metal films", Phys. Rev. B, 49(15), 10699-10706.   DOI   ScienceOn
36 Tschopp, M. and McDowell, D. (2007), "Tension-compression asymmetry in homogeneous dislocation nucleation in single crystal copper", Appl. Phys. Lett., 90(12), 121916.   DOI   ScienceOn
37 Sutrakar, V.K. and Mahapatra, D.R. (2010), "Single and multi-step phase transformation in CuZr nanowire under compressive/tensile loading", Intermetallics, 18(4), 679-687.   DOI   ScienceOn
38 Tanner, S., Gray, J., Rogers, C., Bertness, K. and Sanford, N. (2007), "High-Q GaN nanowire resonators and oscillators", Appl. Phys. Lett., 91(20), 203117.   DOI   ScienceOn
39 Timoshenko, S.P. and Gere, J.M. (1961), Theory of elastic stability, McGraw-Hill, New York.
40 Wan, J., Fan, Y., Gong, D., Shen, S. and Fan, X. (1999), "Surface relaxation and stress of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb", Model. Simul. Mater. Sc., 7(2), 189.   DOI   ScienceOn
41 Wang, B., Shi, D., Jia, J., Wang, G., Chen, X. and Zhao, J. (2005), "Elastic and plastic deformations of nickel nanowires under uniaxial compression", Physica E., 30(1-2), 45-50.   DOI
42 Wang, G. and Feng, X. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94(14), 141913.   DOI   ScienceOn
43 Wang, Z., Zu, X., Gao, F. and Weber, W.J. (2008), "Atomistic simulations of the mechanical properties of silicon carbide nanowires", Phys. Rev. B, 77(22), 224113.   DOI
44 Wang, Z.J., Liu, C., Li, Z. and Zhang, T.Y. (2010), "Size-dependent elastic properties of Au nanowires under bending and tension-Surfaces versus core nonlinearity", J. Appl. Phys., 108(8), 083506.   DOI   ScienceOn
45 Weinberger, C. and Cai, W. (2010a), "Orientation-dependent plasticity in metal nanowires under torsion: Twist boundary formation and eshelby twist", Nano Lett., 10(1), 139-142.   DOI   ScienceOn
46 Weinberger, C.R. and Cai, W. (2010b), "Plasticity of metal wires in torsion: Molecular dynamics and dislocation dynamics simulations", J. Mech. Phys. Solids, 58(7), 1011-1025.   DOI   ScienceOn
47 Wu, B., Heidelberg, A., Boland, J.J., Sader, J.E., Sun, X.M. and Li, Y.D. (2006), "Microstructure-hardened silver nanowires", Nano Lett., 6(3), 468-472.   DOI   ScienceOn
48 Wen, Y.H., Wang, Q., Liew, K.M. and Zhu, Z.Z. (2010), "Compressive mechanical behavior of Au nanowires", Phys. Lett. A, 374(29), 2949-2952.   DOI   ScienceOn
49 Wen, Y.H., Zhu, Z.Z., Shao, G.F. and Zhu, R.Z. (2005), "The uniaxial tensile deformation of Ni nanowire: atomic-scale computer simulations", Physica E., 27(1-2), 113-120.   DOI   ScienceOn
50 Wu, B., Heidelberg, A. and Boland, J.J. (2005), "Mechanical properties of ultrahigh-strength gold nanowires", Nat. Mater., 4(7), 525-529.   DOI   ScienceOn
51 Wu, H. (2004), "Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod", Comp. Mater. Sci., 31(3-4), 287-291.   DOI   ScienceOn
52 Wu, H. (2006a), "Molecular dynamics study on mechanics of metal nanowire", Mech. Res. Commun., 33(1), 9-16.   DOI   ScienceOn
53 Wu, H.A. (2006b), "Molecular dynamics study of the mechanics of metal nanowires at finite temperature", Eur. J. Mech. A-Solid., 25(2), 370-377.   DOI   ScienceOn
54 Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H. (2003), "One-dimensional nanostructures: synthesis, characterization, and applications", Adv. Mater., 15(5), 353-389.   DOI   ScienceOn
55 Yang, Z., Lu, Z. and Zhao, Y.P. (2009), "Atomistic simulation on size-dependent yield strength and defects evolution of metal nanowires", Comp. Mater. Sci., 46(1), 142-150.   DOI   ScienceOn
56 Yuan, L., Shan, D. and Guo, B. (2007), "Molecular dynamics simulation of tensile deformation of nano-single crystal aluminum", J. Mater. Process. Tech., 184(1-3), 1-5.   DOI
57 Zhan, H.F. and Gu, Y.T. (2011a), "Exploration of the defect's effect on the mechanical properties of different orientated nanowires", Adv. Mater. Res., 328(30), 1239-1244.
58 Zhan, H.F., Gu, Y.T., Chen, Y. and Yarlagadda, P.K.D.V. (2011a), "Numerical exploration of the defect's effect on mechanical properties of nanowires under torsion", Adv. Mater. Res., 335-336, 498-501.   DOI
59 Zhan, H.F. and Gu, Y.T. (2011b), Molecular dynamics study of dynamic buckling properties of nanowires with defect., 14th Asia-Pacific Vibration Conference, HongKong.
60 Zhan, H.F. and Gu, Y.T. (2011c), "Atomistic exploration of deformation properties of copper nanowires with preexisting defects", Comp. Model. Eng. Sci., 80(1), 23-56.
61 Zhan, H.F., Gu, Y.T., Yan, C., Feng, X.Q. and Yarlagadda, P.K.D.V. (2011b), "Numerical exploration of plastic deformation mechanisms of copper nanowires with surface defects", Comp. Mater. Sci., 50(12), 3425-3430.   DOI   ScienceOn
62 Zhan, H.F., Gu, Y.T. and Yarlagadda, P.K.D.V. (2010), Atomistic numerical investigation of single-crystal copper nanowire with surface defect, 6th Australasian Congress on Applied Mechanics, Perth. Engineers Australia.
63 Zhan, H.F., Gu, Y.T. and Yarlagadda, P.K.D.V. (2011c), "Advanced numerical characterization of monocrystalline copper with defects", Adv. Sci. Lett., 4(4-5), 1293-1301.   DOI
64 Zhang, Y. and Huang, H. (2009), "Do twin boundaries always strengthen metal nanowires?", Nanoscale Res. Lett., 4(1), 34-38.   DOI   ScienceOn
65 Zhao, K.J., Chen, C.Q., Shen, Y.P. and Lu, T.J. (2009), "Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper", Comp. Mater. Sci., 46(3), 749-754.   DOI   ScienceOn
66 Zheng, Y., Zhang, H., Chen, Z., Wang, L., Zhang, Z. and Wang, J. (2008), "Formation of two conjoint fivefold deformation twins in copper nanowires with molecular dynamics simulation", Appl. Phys. Lett., 92(4), 041913.   DOI   ScienceOn
67 Ziegenhain, G., Hartmaier, A. and Urbassek, H.M. (2009), "Pair vs many-body potentials: Influence on elastic and plastic behavior in nanoindentation of fcc metals", J. Mech. Phys. Solids, 57(9), 1514-1526.   DOI   ScienceOn
68 Bierman, M.J. and Jin, S. (2009), "Potential applications of hierarchical branching nanowires in solar energy conversion", Energ. Envir. Sci., 2(10), 1050-1059.   DOI   ScienceOn
69 Afanasyev, K.A. and Sansoz, F. (2007), "Strengthening in gold nanopillars with nanoscale twins", Nano Lett., 7(7), 2056-2062.   DOI   ScienceOn
70 Agrawal, R., Peng, B., Gdoutos, E.E. and Espinosa, H.D. (2008), "Elasticity size effects in ZnO nanowires- A combined experimental-computational approach", Nano Lett., 8(11), 3668-3674.   DOI   ScienceOn
71 Cao, A. and Wei, Y. (2006), "Atomistic simulations of the mechanical behavior of fivefold twinned nanowires", Phys. Rev. B, 74(21), 214108.   DOI
72 Cao, A., Wei, Y. and Mao, S. (2007), "Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries", Appl. Phys. Lett., 90(15), 151909.   DOI   ScienceOn
73 Chan, W.K., Luo, M. and Zhang, T.Y. (2008), "Molecular dynamics simulations of four-point bending tests on SiC nanowires", Scripta Mater., 59(7), 692-695.   DOI   ScienceOn
74 Chang, W.J. (2003), "Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading", Microelectron. Eng., 65(1-2), 239-246.   DOI   ScienceOn
75 Chen, J. and Lee, J.D. (2010), "Atomistic analysis of nano/micro biosensors", Interact. Multiscale Mech, 3(2), 111-121.   DOI
76 Chen, M.J., Xiao, G.B., Chen, J.X. and Wu, C.Y. (2010), "Research on the influence of machining introduced sub-surface defects and residue stress upon the mechanical properties of single crystal copper", Sci. CHINA Technol. Sci., 53(12), 3161-3167.   DOI   ScienceOn
77 Chen, Y., Dorgan Jr, B.L., McIlroy, D.N. and Aston, D.E. (2006), "On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires", J. Appl. Phys., 100(10), 104301.   DOI   ScienceOn
78 Deng, C. and Sansoz, F. (2009a), "Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires", Nano Lett., 9(4), 1517-1522.   DOI   ScienceOn
79 Deng, C. and Sansoz, F. (2009b), "Fundamental differences in the plasticity of periodically twinned nanowires in Au, Ag, Al, Cu, Pb and Ni", Acta Mater., 57(20), 6090-6101.   DOI   ScienceOn
80 Deng, C. and Sansoz, F. (2009c), "Size-dependent yield stress in twinned gold nanowires mediated by sitespecific surface dislocation emission", Appl. Phys. Lett., 95(9), 091914.   DOI   ScienceOn
81 Doyama, M. (1995), "Simulation of plastic deformation of small iron and copper single crystals", Nucl. Instrum. Meth. B., 102(1-4), 107-112.   DOI
82 Diao, J., Gall, K., Dunn, M. and Zimmerman, J. (2006), "Atomistic simulations of the yielding of gold nanowires", Acta Mater., 54(3), 643-653.   DOI   ScienceOn
83 Diao, J., Gall, K. and Dunn, M.L. (2003), "Surface-stress-induced phase transformation in metal nanowires", Nat. Mater., 2(10), 656-660.   DOI   ScienceOn
84 Diao, J., Gall, K. and Dunn, M.L. (2004), "Surface stress driven reorientation of gold nanowires", Phys. Rev. B, 70(7), 075413.   DOI
85 Ekinci, K. and Roukes, M. (2005), "Nanoelectromechanical systems", Rev. Sci. Instrum., 76(6), 061101.   DOI   ScienceOn
86 Feng, X., He, R., Yang, P. and Roukes, M. (2007), "Very high frequency silicon nanowire electromechanical resonators", Nano Lett., 7(7), 1953-1959.   DOI   ScienceOn
87 Foiles, S.M., Baskes, M.I. and Daw, M.S. (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Phys. Rev. B, 33(12), 7983-7991.   DOI   ScienceOn
88 Gall, K., Diao, J. and Dunn, M.L. (2004), "The strength of gold nanowires", Nano Lett., 4(12), 2431-2436.   DOI   ScienceOn
89 Gao, Y., Wang, F., Zhu, T. and Zhao, J. (2010), "Investigation on the mechanical behaviors of copper nanowires under torsion", Comput. Mater. Sci., 49(4), 826-830.   DOI   ScienceOn
90 Gu, Y.T. and Zhan, H.F. (2010), "MD investigations for mechanical properties of copper nanowire with and without surface defects", Int. J. Comput. Meth., 9(1), 1-8.
91 Horstemeyer, M., Baskes, M. and Plimpton, S. (2001), "Length scale and time scale effects on the plastic flow of fcc metals", Acta Mater., 49(20), 4363-4374.   DOI   ScienceOn
92 Ikeda, H., Qi, Y., Çagin, T., Samwer, K., Johnson, W.L. and Goddard, W.A. (1999), "Strain rate induced amorphization in metallic nanowires", Phys. Rev. Lett., 82(14), 2900-2903.   DOI   ScienceOn