DOI QR코드

DOI QR Code

Aerodynamic Characteristics of Long-Span Bridges under Actively Generated Turbulences

능동 난류 생성을 통한 장대 교량의 공력 특성 비교

  • 이승호 (전북대학교 대형풍동실험센터) ;
  • 권순덕 (전북대학교 토목공학과)
  • Received : 2010.12.01
  • Accepted : 2011.06.03
  • Published : 2011.10.31

Abstract

The main purpose of this study is to investigate the affect of various turbulence properties on aerodynamic characteristics of twin box bridge section. To achieve this goal, active turbulence generator which successfully simulated various target turbulences was developed in the wind tunnel. From the wind tunnel tests, turbulence integral length scale did not affect on the aerodynamic forces and flutter derivatives except for the $A_1^*$ curve. Turbulence intensity gave slight effect on the unsteady aerodynamic force, but turbulence integral length scale did not affect the self-excited forces except vertical direction component.

본 연구에서는 다양한 풍동실험을 통하여 기류 조건에 따른 트윈박스 거더 교량의 공기역학적 특성을 파악하는데 그 목적이 있다. 이를 위하여 자연적인 난류를 생성할 수 있는 능동 난류 발생장치를 개발하였고 검증하였다. 그리고 능동 난류 및 격자 난류 조건하에서 정적공기력, 비정상공기력 그리고 버페팅 응답 측정 실험을 수행하였다. 풍동실험 결과를 보면, 난류 적분길이는 교량의 정적공기력과 $A_1^*$를 제외한 플러터계수에는 영향을 주지 않는 것으로 나타났다. 그리고 난류 강도는 비정상공기력에 일부 영향을 미치고, 난류 적분길이 또한 일부 수직 방향 성분에 영향을 주는 것으로 나타났다.

Keywords

References

  1. 김희덕(2004) 교량기본단면의 와류진동에 미치는 난류효과에 대한 구조감쇠의 영향, 한국풍공학회지, 한국풍공학회, 제8권, 제2호.
  2. 이승호, 권순덕(2009) 강제 가진에 의한 교량 플러터계수 추출, 한국소음진동공학회 논문집, 한국소음진동공학회, 제19권, 제5호.
  3. Bienkiewicz, B., Cermak, J.E., Peterka, J.A., and Scanlan, R.H. (1983) Active modeling of large-scale turbulence, J. of Wind Engineering and Industrial Aerodynamics, Vol. 13, No. 1-3.
  4. Bisplinghoff, R.L. and Ashley, H. (1975) Principles of Aeroelasticity, Dover.
  5. Brancaleoni, F. and Diana, G. (1993) The aerodynamic design of the Messina Straits Bridge, J. of Wind Engineering and Industrial Aerodynamics, Vol. 48, No. 2-3.
  6. Haan, F.L., and Sarkar, P.P., (2006) Development of an active gust generation mechanism on a wind tunnel for wind engineering and industrial aerodynamics applications, Wind and Structures, Vol. 9, No. 5.
  7. Hui, M.C.H. and Larsen, A. (2002) Aerodynamic investigation of the deck of Stonecutter Bridge emphasizing Reynolds number effects, The 2nd International Symposium on Wind and Structures, Busan.
  8. Kawatani, M., and Kim, H., (1992) Evaluation of aerodynamic admittance for buffeting, J. of Wind Engineering and Industrial Aerodynamics, Vol. 41, No. 1-3.
  9. Kobayashi, H., Hatanaka, A., and Ueda, T. (1994) Active simulation of time histories of strong wind gust in a wind tunnel, J. of Wind Engineering and Industrial Aerodynamics, Vol. 5, No. 3.
  10. Kwon, S.D, Lee, S.H., Uejima, H., and Lee, M.J. (2008) Wind resistance design of Kwangyang Bridge, Bridge Maintance, Safety, Management, Health Monitoring and Informatics, CRC Press.
  11. Larose, G.L., Tanaka, H., Gimsing, N.J. and Dyrbye, C. (1998) Direct measurements of buffeting wind forces on bridge decks, J. of Wind Engineering and Industrial Aerodynamics, Vol. 74-76.
  12. Lee, S.H, and Kwon, S.D. (2009) A simple apparatus for measuring self-excited wind forces on bridges, 7th APCWE, Taipei.
  13. Scanlan, R.H. and Jones, N.P. (1999) A form of aerodynamic admittance for use in bridge aeroelasticity analysis, J. of Fluids and Structures, Vol. 13, No. 7-8.
  14. Simiu, E. and Scanlan, R.H. (1996) Wind Effects on Structures, 3rd ED., John Wiley & Sons Inc.
  15. Talamelli, A., Riparbelli, L., and Westin, J. (2004) An active gird for the simulation of atmospheric boundary layers in a wind tunnel, Wind and Structures, Vol. 7, No. 2.
  16. Tubino, F. (2005) Relationships among aerodynamic admittance functions, flutter derivatives and static coefficients for longspan bridges, J. of Wind Engineering and Industrial Aerodynamics, Vol. 93, No. 12.