• 제목/요약/키워드: Turbulent flow region

검색결과 498건 처리시간 0.021초

레이저 형광여기법(LIF)를 이용한 복잡 난류유동장의 혼합특성에 관한 연구 (A Study on the Mixing Characteristics in Complex Turbulent Flow by a Laser Induced Fluorescence Method)

  • 김경천;정은호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.542-547
    • /
    • 2001
  • A non-intrusive Planar Laser-Induced Fluorescence(PLIF) technique was applied to study the turbulent mixing process in a Rushton turbine reactor. Instantaneous and ensemble averaged concentration fields are obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by a thin Nd:Yag laser sheet illuminating the whole center plane of the stirred tank. The gray level images captured by a 14-bit cooled CCD camera can be transformed to the local concentration values using a calibration matrix. The dye injection point was selected at the tank wall with three quarter height (3/4H) from the tank bottom to observe the mixing characteristics in upper bulk flow region. There exist distinct two time scales: the rapid decay of mean concentration in each region after the dye infusion reflects the large scale mixing while the followed slow decay reveals the small scale mixing. The temporal change of concentration probability functions conjectures the two sequential processes in the batch type mixing. An inactive column of water existed above the impeller disk, in which the fluid rotates with the shaft but is isolated from the mean bulk flow.

  • PDF

LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구 (An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by using LDV)

  • 이홍구;손현철;이행남;박길문
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.397-403
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional $180^{\circ}$ curved duct were experimentally investigated. Experimental studies for air flows were conducted to measure axial velocity and wall shear stress distributions and entrance length in a square-sectional $180^{\circ}$ curved duct by using the LDV with the data acquisition and the processing system. The experiment was conducted in seven sections from the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation were summarized as follows ; (1) When the ratio of velocity amplitude ($A_1$) was less than one, there was hardly any velocity change in the section except near the wall and any change in axial velocity distributions along the phase. When the ratio of velocity amplitude ($A_1$) was 0.6, the change rate of velocity was slow. (2) Wall shear stress distributions of turbulent pulsating flow were similar to those of turbulent steady flow. The value of the wall shear stress became minimum in the inner wall aid gradually increased toward the outer wall where it became maximum. (3) The entrance length of turbulent pulsating flow reached near the region of bend angle of $90^{\circ}$, like that of turbulent steady flow. The entrance length was changed by the dimensionless angular frequency (${\omega}^+$).

  • PDF

LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW USING ALGEBRAIC WALL MODEL

  • MALLIK, MUHAMMAD SAIFUL ISLAM;UDDIN, MD. ASHRAF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권1호
    • /
    • pp.37-50
    • /
    • 2016
  • A large eddy simulation (LES) of a turbulent channel flow is performed by using the third order low-storage Runge-Kutta method in time and second order finite difference formulation in space with staggered grid at a Reynolds number, $Re_{\tau}=590$ based on the channel half width, ${\delta}$ and wall shear velocity, $u_{\tau}$. To reduce the calculation cost of LES, algebraic wall model (AWM) is applied to approximate the near-wall region. The computation is performed in a domain of $2{\pi}{\delta}{\times}2{\delta}{\times}{\pi}{\delta}$ with $32{\times}20{\times}32$ grid points. Standard Smagorinsky model is used for subgrid-scale (SGS) modeling. Essential turbulence statistics of the flow field are computed and compared with Direct Numerical Simulation (DNS) data and LES data using no wall model. Agreements as well as discrepancies are discussed. The flow structures in the computed flow field have also been discussed and compared with LES data using no wall model.

단면의 폭이 증가하는 $180^\circ$ 곡덕트 내 난류유동의 수치해석적 연구 (Numerical Study on the Turbulent Flow in the $180^\circ$ Bends increasing Cross-sectional Aspect Ratio)

  • 김원갑;김철수;최영돈
    • 설비공학논문집
    • /
    • 제16권9호
    • /
    • pp.804-810
    • /
    • 2004
  • This paper reports the characteristics of the three dimensional turbulent flow by numerical method in the 180 degree bends with increasing cross-sectional area. Calculated pressure and velocity, Reynolds stress distributions are compared to the experimental data. Turbulence model employed are low Reynolds number $textsc{k}$-$\varepsilon$ model and algebraic stress model(ASM). The results show that the main vortex generated from the inlet part of the bend maintained to outlet of the bend and vortices are continually developed at the inner wall region. The distribution of turbulent kinetic energy along the bend are increase up to 120$^{\circ}$ because of increment of cross-sectional area. Secondary flow strength of the flow is lower about 60% than that of square duct flow.

Elliptic Blending Model을 사용하여 자연대류 해석 시 난류열유속 처리법 비교 (COMPARISON OF THE TREATMENTS OF TURBULENT HEAT FLUX FOR NATURAL CONVECTION WITH THE ELLIPTIC-BLENDING SECOND-MOMENT CLOSURE)

  • 최석기;김성오
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.26-31
    • /
    • 2007
  • A comparative study on the treatment of the turbulent heat flux with the elliptic blending second-moment closure for a natural convection flow is performed. Three cases of different treating the turbulent heat flux are considered. Those are the generalized gradient diffusion hypothesis (GGDH), the algebraic flux model (AFM) and the differential flux model (DFM). The constants in the models are adjusted with a primary emphasis placed on the accuracy of predicting the local Nusselt number. These models are implemented in a computer code specially designed for evaluation of turbulent models. Calculations are performed for a turbulent natural convection in the 1:5 rectangular cavity and the calculated results are compared with the available experimental data. The results show that the three models produce nearly the same accuracy of solutions. These results show that the GGDH, AFM and DFM models for treating the turbulent heat flux are sufficient for this simple shear flow where the shear production is dominant. It is observed that, in the weakly stratified region at the center zone of the cavity, the vertical velocity fluctuation is nearly zero in the GGDH solutions, which shows that the GGDH model may not be suitable for the strongly stratified flow. Thus, further study on the strongly stratified flow should be followed.

액체배관으로부터 위험물질 누출속도 산정에 관한 연구 (A Study on the Release Rate of Hazardous Materials from Liquid Pipeline)

  • 탁송수;조영도
    • 한국가스학회지
    • /
    • 제6권1호
    • /
    • pp.81-85
    • /
    • 2002
  • 탱크와 연결된 배관에서 원하지 않은 사고로 인해 액체 위험물질의 누출이 발생할 경우 천이영역에서의 누출속도 계산방법을 제시하였다. 배관에서의 액누출에 관한 누출속도는 층류와 난류영역에서 Crowl and Louvar 등이 제시한 모델식을 이용하여 프로그램 또는 직접계산에 의해 이루어지고 있으나, 천이영역에 대한 모델식은 없었다. 따라서 본 논문에서는 Lap-Mou Tam 등이 실험한 천이영역에서 레이놀즈수에 따른 마찰계수 실험값을 이용하여 천이영역에 대한 누출속도 값을 계산하였고 이 값을 층류와 난류에 관한 모델식을 사용한 값과의 비교를 통해 천이영역에서 일반적으로 사용할 수 있는 모델식으로 난류에 관한 모델식으로 계산한 값에 안전율 $30\%$를 추가한 값을 위험평가에 사용할 수 있음을 보였다.

  • PDF

EMBR을 이용한 연주공정에서의 난류유동 및 응고에 대한 연구 (A Study on the Turbulent Flow and Solidification in a Continuous Casting Process with Electromagnetic Brake)

  • 김덕수;김우승
    • 대한기계학회논문집B
    • /
    • 제23권3호
    • /
    • pp.374-387
    • /
    • 1999
  • Two-dimensional turbulent fluid flow and solidification were investigated in a continuous casting process of a steel slab with electromagnetic field. The electromagnetic field was described by the Maxwell equations. The enthalpy-porosity relation was employed to suppress the velocity within a mushy region. A revised low-Reynolds number $k-{\varepsilon}$ turbulence model was used to consider the turbulent effects. It is shown that the temperature gradient in the casting direction in the case with EMBR becomes very weak compared to that of the case without EMBR. The results also show that the velocity profiles of the case with solidification are quite different from those of the case without solidification.

평판 근접 후류에서 경계층의 유동조건에 따른 난류유동장 (Turbulent Flow Field on Boundary Layer Flow Conditions in the Near-Wake of a Flat Plate)

  • 김동하;장조원
    • 한국항공운항학회지
    • /
    • 제12권3호
    • /
    • pp.25-39
    • /
    • 2004
  • An experimental study was quantitatively carried out in order to investigate the influence of flow conditions on a boundary layer in the near-wake of a flat plate. Tripping wires attached at various positions were selected to change flow conditions of a boundary layer in the vicinity of trailing edge. The flows such as laminar, transitional, and turbulent boundary layer at 0.98C from the leading edge are imposed to investigate the evolution of symmetric and asymmetric wake. Measurements were made at freestream velocity of 6.0m/s, and the corresponding Reynolds number is $2.8{\times}10^5$. An x-type hot-wire probe(55P61) was employed to measure at 8 stations in the near-wake region. Test results show that the near-wake of the flat plate for the case of a laminar and transitional boundary layer is sensitive to mean flow shear generated after separation but for the case of turbulent boundary layer is insensitive.

  • PDF

周期的으로 斷面이 變化하는 完全確立된 亂流再循環 流動과 亂流熱傳達의 數値分析 (Numerical Analysis of Fully Developed Turbulent Recirculating Flow and Heat Transfer for The Periodic Variations of Cross Sectional Area)

  • 이병곤;최영돈
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.138-149
    • /
    • 1986
  • 본 연구에서는 위의 방법을 수정 발전시켜 완전확립된 난류유동과 열전달장을 해석하였다. 본 연구에서 해석한 유동장은 Fig.3과 같이 내관 외면에 직사각형 인공 조도를 갖고 외관은 매끈한 이중동심원관내의 유동이며, 해의 정확성을 높이기 위하여 Leschziner & Rodi의 유선곡률모델을 수정보완하여 사용하였으며 수치해석의 오류확산 을 감소시키기 위하여 QUICK 해법을 사용하였다.

기저부를 갖는 축대칭 수중운동체의 저항예측에 관한 수치적 연구 (Numerical Investigation for Drag Prediction of an Axisymmetric Underwater Vehicle with Bluff Afterbody)

  • 김민재
    • 한국군사과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.372-377
    • /
    • 2010
  • The objective of this study is to predict the drag of an axisymmetric underwater vehicle with bluff afterbody using CFD. FLUENT, commercial CFD code, is used to simulate high Reynolds number turbulent flows around the vehicle. The computed drag coefficients are compared to available experimental data at various Reynolds numbers. Four widely used two-equation turbulence models are investigated to evaluate their performance of predicting the anisotropic turbulence in a recirculating flow region, which is caused by flow separation arising from the base of the vehicle. The simulations with Realizable ${\kappa}-{\varepsilon}$ and ${\kappa}-{\omega}$ SST turbulence models predict the anisotropic turbulent flows comparatively well and the drag prediction results with those models show good agreements with the experimental data.