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ABSTRACT. A large eddy simulation (LES) of a turbulent channel flow is performed by using
the third order low-storage Runge—Kutta method in time and second order finite difference
formulation in space with staggered grid at a Reynolds number, Re, = 590 based on the
channel half width, 6 and wall shear velocity, u-. To reduce the calculation cost of LES,
algebraic wall model (AWM) is applied to approximate the near-wall region. The computation
is performed in a domain of 276 X 2§ x wé with 32 x 20 x 32 grid points. Standard Smagorinsky
model is used for subgrid-scale (SGS) modeling. Essential turbulence statistics of the flow field
are computed and compared with Direct Numerical Simulation (DNS) data and LES data using
no wall model. Agreements as well as discrepancies are discussed. The flow structures in
the computed flow field have also been discussed and compared with LES data using no wall
model.

1. INTRODUCTION

Turbulent channel flow is an important test case for numerical simulations and validation
of turbulent models. It is commonly encountered in engineering practice. Because of the
simplicity in geometry and its wide application background in industry, the experimental and
computational studies of the turbulent channel flow have been carried out extensively [1-9].

In recent years, with the development of the technique of numerical simulation, LES has
been demonstrated to be an useful research tool for understanding the physics of turbulence
in more complex geometries than DNS. Although DNS is considered as the exact approach to
turbulence simulation, yet it is very expensive if the flow Reynolds number is very high and
computational grid is very large. LES is a method in which large-scale motions are exactly
calculated and the SGS motion is modeled [5-6].
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To conduct LES in wall bounded turbulent flows [3-10], a large number of computational
nodes are generally required to resolve the boundary layers. Wall integration of turbulence
models requires the first computational node above the wall to be situated within the viscous
sublayer. But, wall functions do not require the excessive grids in the boundary layer. For in-
stance, the first computational node might be positioned in the logarithmic inertial layer, which
will lead to a significant reduction in the number of computational nodes in the boundary layer
[11]. But, this is to be done without a significant loss in accuracy. However, the computational
cost of LES can be reduced by using wall stress models.

Wall stress models provide an algebraic relationship between local wall shear stresses and
tangential velocities at the wall-nearest velocity nodes. This approach was first employed by
Schumann [12] for performing a plane channel flow simulation. He assumed that the stream-
wise and spanwise velocity fluctuations are in phase with the respective surface shear stress
components. A number of improvements to Schumann’s model were suggested by, for exam-
ple, GrOtzbach [8] and Werner and Wengle [9], who wanted to avoid having to know the mean
wall shear stress a priori and to simplify the computations. Another wall model was proposed
by Piomelli et al. [13] as a modification of the previous wall models to empirically account for
the effect of sweep and ejection events on the wall shear stress. To reduce the calculation cost
of LES, in this study we have used AWM [14] at the near wall region.

To perform LES in turbulence, discretization method is another concern. For spatial dis-
cretization the conventional finite difference method is widely used with structured grids [15-
17], and for temporal discretization the explicit Runge—Kutta methods [18-19] are a popular
choice. Although in explicit Runge—Kutta methods generally the Poisson equation is solved
for the pressure at each stage, but these methods generally have better stability properties, do
not have a start-up problem, and easily allow for adaptive time stepping [19].

To conduct LES in a turbulent channel flow it is necessary to do long time integration that
need much wider computation region. In this case, the application of a low-storage Runge—
Kutta scheme is significant to make sufficient utilization of computer resources. Because, low-
storage Runge—Kutta schemes require minimum levels of memory locations during the time
integration and efficiently comply with the modern large-scale scientific computing needs. A
number of third-order low-storage explicit Runge—Kutta schemes were derived by Williamson
[20].

The objective of this study is to perform LES of a plane turbulent channel flow using AWM.
Spatial and temporal discretization has been done by using the second order finite difference
formulation and third order low-storage explicit Runge—Kutta method respectively in a stag-
gered grid system. For SGS modeling the Standard Smagorinsky model has been used. Essen-
tial turbulence statistics of the computed flow field are investigated and compared with DNS
data of Moser et al. [2] and LES data of Uddin and Mallik [5]. Instantaneous streamwise
velocity distribution at the centerline plane of the channel and instantaneous streamwise shear
velocity distribution at the immediate vicinity of the wall have also been discussed by different
contour plots and compared with those obtained by Uddin and Mallik [5]. Vortical structures
using second invariant of velocity gradient tensor in the turbulent flow field are visualized and
compared with that of Uddin and Mallik [5]. More specifically, the prime objective of our
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investigation is whether our simulation is able to capture turbulence at low resolution by using
AWM in LES.

2. GOVERNING EQUATIONS

The governing equations of LES for an incompressible plane turbulent channel flow are the
filtered Navier—Stokes and continuity equations for constant density in Cartesian co-ordinates
given as [5, 21]:

ou; o0 .  1dp 9 ou; ~ 0uj

5 —i—a?j(uzu]—i-nj)— p8xi+8x]~ [1/ (8%—1—8%)], 2.1
o0u; B
oy =0 (2.2)

where the index 4, j = 1, 2, 3 refers to the z, y and z directions respectively. Here @y, i, 4 are
streamwise, wall normal and spanwise filtered velocity respectively. p is the filtered pressure,
p represents the density of the fluid and v is the kinematic viscosity. 7;; is SGS Reynolds stress
which is in fact the large scale momentum flux caused by the action of the small or unresolved
scales. The equations are non-dimensioned by the channel half-width J, and the wall shear
velocity u,. The flow Reynolds number is therefore written as Re; = u,0/v. A schematic
geometry of the plane turbulent channel flow and the co-ordinate system are shown in Fig. 1.

FIGURE 1. Schematic geometry of plane channel flow.

In LES, the velocity field u; is decomposed into a filtered or large scale component %; and a
SGS component u/; by applying a spatial filtering operation. This decomposition is represented
as [21]:

up = Ui +u'; (2.3)
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The resolved velocity component, #%; can be expressed as
+00 400 +00

ui (x1, x2, T3, t ///(HG i — T >u, (27, =y, af, t) da dahydzy  (2.4)

where G; (x; — ) is a general filtering function which satisfies the following relation:
+00 +00 +00

///(HG i — )dazldaszaz3—1 (2.5)
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The SGS flow field, u/; is obtained by subtracting the filtered field from the full field. The
effect of the SGS field appears through the SGS Reynolds stress term, which is defined as

Tij = Ui Uj — Ui Uyj. (2.6)

LES requires a model to represent the effects of the SGS field on the filtered field. The models
used to approximate the SGS Reynolds stress are called SGS models. The simplest and most
popular SGS model is the Standard Smagorinsky model. In this model, 7;; is computed as [21]:

i = —2vgSi; (2.7)

where,
vs = (Cs A)? | S| (2.8)
is the SGS eddy viscosity The quantity C's is the Smagorinsky constant which is not fixed.
Many authors used different values of C's for LES in turbulent channel flows. In this study, the
computation is performed for C's = 0.065 for a channel flow [3]. A = (Az Ay Az)l/ 3 is filter

width and |S| = /2 S;; Sj; is the magnitude of strain rate, where S;; = : (gg; + gzz

For the reduced growth of the small scales at the near wall region the SGS eddy viscosity
can be modified as [5, 6]: -
= (Csfs8)* |9 2.9)

Here fg = 1—exp ( ) is the Van-Driest damping function, where y is the distance from

the wall in viscous wall units defined as y™ = 427 and AT is a constant usually taken to be
approximately 25 [21].

3. NUMERICAL METHODS AND GRID SYSTEM

The governing equations of LES are solved using the third order low-storage explicit Runge—
Kutta method in time [22] and the second order finite difference formulae in space. The cou-
pling between continuity equation and pressure fields is performed by the simplified marker-
and-cell (SMAC) method [23]. Poisson equation is solved iteratively by Incomplete Cholesky
Decomposition Conjugated Gradient method. The Spalding equation is solved by iterative
procedure based on the Newton method.

Conventional numerical algorithms based on a structured computational grid mostly fall
into three classes: regular, staggered, and collocated grid systems. In this study, the staggered
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grid system has been used.Staggered grids may be constructed by several methods. On the
staggered grid, scalar variable pressure are stored at the nodes and velocities are stored at the
middle of the two nodes. A staggered grid system in a two-dimensional plane has been given
in our previous papers [5, 6]. The biggest advantage of the staggered arrangement is the strong
coupling between the velocities and the pressure.

When the computational domain is discretized by the grid points, the governing equations
should be discretized in this domain. This will result in a set of ordinary differential equations
for each grid point in space. There are different methods to discretize the equations and the
finite difference method is the most straightforward one. Finite difference method is simply
the substitution of the continuous differential operators with corresponding discrete operators.
There are a variety of discretization techniques available for developing discrete approxima-
tions to a set of governing partial differential equations such as Navier—Stokes equations. Let
the finite difference operator with stencil size 1 acting on a discrete variable ¢ with respect to
x for structural Cartesian meshes with uniform spacing be defined as [5, 6]:

Oio| _ Pigk— Pim1,5k

oz CELE Az
where the grid spacings Ax are constant in x direction, and (i, j, k) denotes associated mesh
indices in x, y and z directions. Discrete operators in the y and z directions are similarly
defined. In addition to the discrete differencing operator we also define interpolation operators
given in our previous papers [5, 6].

Since the Navier—Stokes equations are unsteady, to solve them numerically both spatial and
temporal discretizations are needed. For temporal discretization a low-storage explicit Runge—
Kutta method is shortly described by Uddin and Mallik [5], and Mallik et al. [6]. Such a
scheme requires only two levels of memory locations during the time integration.

(3.1)

4. COMPUTATIONAL PARAMETERS

The computational domain of the mesh is selected tobe 27§ X 24 X 7 J in streamwise, wall
normal and spanwise directions respectively. The computation is performed using 32 x 20 x 32
grid points in the corresponding directions, and the possible Reynolds number is Re,; = 590
based on the channel half width, 6 and wall shear velocity, u,. The computation is carried out
with a non-dimensional time increment, At = 0.002, which maintained a CFL number [5, 6]:
[(ue)| | [(ay)| | [(a2)]

CFL = Atmax < Ay + Ay + A. > =0.334 < 1.0 4.D
where, (u;) denotes an ensemble average of ;.

The computation is executed up to time, ¢ = nAt, where n is the number of time step. The
computational domain is discretized with uniformly distributed grid in all the directions, and
the grid spacing in the corresponding directions are Az ~ 116, Az™ ~ 58 and Ayt ~ 59
wall units respectively. The first mesh point away from the wall is aty™ ~ 29.5wall unit.
The superscript ‘4’ indicates a non-dimensional quantity scaled by the wall variables; e.g.,

y* = yu, /v, where v is the kinematic viscosity and u, = (1,,/p)*/? i

is the wall shear velocity.
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5. BOUNDARY CONDITIONS

We consider fully developed incompressible viscous flow and make use of periodic boundary
conditions in the streamwise and spanwise directions. For the staggered grid arrangement we
set up additional nodes surrounding the physical boundary. The calculations are performed at
internal nodes only. The wall boundary condition is no-slip. Just outside the solution domain
the values of the velocity components are equated to the values of the nearest node just inside
the solution domain [24]. The pressure boundary condition is periodic in the streamwise and
spanwise directions. But in the wall normal direction the values of p, just outside the solution
domain, are determined by assuming a zero gradient [25].

6. ALGEBRAIC WALL MODEL

To reduce the calculation cost of LES, the near wall layer is approximated by a special form
of AWM given by Spalding [14]. In this model one uses Spalding’s law as an algebraic equation
to calculate the wall shear stresses. Spalding’s law is a non-linear equation about the wall shear
velocity u., whose special form is

y"=f(ut)=ut+Alexp (ku") —1— (ku')/2- (KU+)3/6— (Hu+)4/24] (6.1)

where, A = exp(—xB) = 0.1108,x = 0.4 and B = 5.5. The exceptional feature of Spald-
ing’s equation is that it presents y* as a function of u™ rather than u™ as a function of y*.
Here y is the distance from the wall and y* = yu, /v is the non-dimensional wall unit. In
this equation w is the instantaneous horizontal velocity and «™ = u/u, is the non-dimensional
velocity at the first off-wall computational cells. At the first off-wall computational cells the

LES velocity, 1/ (ii,)? 4 (1) is substituted to u of Eq. (6.1). Then Eq. (6.1) is solved by
iterative procedure based on the Newton method for the wall shear velocity, u. After that the
instantaneous wall shear stresses are calculated as follows:

Tw,z /p = (V y+/u+) ﬂx/ya Tw,z/p = (V y+/u+) ﬂz/y (6.2)
These wall shear stresses are then used for the wall boundary condition of velocity fields. It is
to be mentioned that the Spalding’s formulation for the law of the wall with values of constants,
A and « has an undisputed advantage that it satisfies no-slip condition at the wall. Near to wall
region Spalding’s law governs the flow.

7. RESULTS AND DISCUSSIONS

7.1. Turbulence Statistics. In this section we discuss some statistics of the computed flow
field in 3D turbulent channel flow. The computed results are compared with the DNS data
obtained by Moser et al. [2] and LES data using no wall model (LES-NWM) obtained by
Uddin and Mallik [5]. For comparison, the DNS data of Moser et al. [2] is represented by a
solid line, the LES data of Uddin and Mallik [5] is represented by a line with arrow sign and the
computed results using algebraic wall model (LES-AWM) are indicated by a line with circle
in the following figures of this section. Furthermore, in this section we provide a sample of
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error generation for LES-NWM and LES-AWM approaches at some positions in mean velocity
profile. In error calculation, the DNS data are considered as the true value. In this study LES
simulations are initialized with a random solenoidal velocity field and integrated ahead in time
with finite viscosity.

Numerous experiments have shown that the boundary layer in a plane turbulent channel flow
can be divided into two parts: the inner or near wall region and the outer region. At the near
wall region, the dynamics is dominated by the viscous effects. In the outer region, it controlled
by the turbulence. Each of these regions is split into several layers, corresponding to different
types of dynamics. In the case of canonical boundary layer, the near wall region can be largely
subdivided into three layers. These three layers are the viscous sub-layer (y* < 5), buffer
layer (5 < y < 30) and logarithmic inertial layer (y* > 30; y/d < 1) [21]. The outer region
includes the end of the logarithmic inertial region and wake region.

The profile of the mean velocity non-dimensioned by the wall-shear velocity corresponding
to the lower half of the channel is shown in Figure 2, which is defined as

(1)

Ur

ub = (7.1)
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FIGURE 2. The mean velocity profile in wall units.

It can be observed that the computed profile cannot trace the data for the whole bound-
ary layer. Here the first computational cell above the wall is located within the buffer layer
(5 <yt < 30), at about y= = 29.5. That is, the AWM lead to a significant reduction in the
number of computational cells at the near wall region. It has to be noted that our computed
profile, LES-AWM under predicts the LES-NWM profile until end of the range. From this fig-
ure it is also revealed that the LES-AWM results are almost collapsed with the DNS results for
yT = 29.5 — 60. Here after for y* =~ 60 — 120, the LES-AWM profile over predicts the DNS
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profile. After that in rest of the range the LES-AWM profile under predicts the DNS profile.
Nonetheless, Figure 3 shows that the agreement of the mean velocity profile for LES-AWM
with the DNS data is better than that of the LES-NWM profile.

Errors generated in LES-NWM and LES-AWM approaches are presented in Table 1. From
this table it can be observed that initially the percentage of relative error in LES-AWM approach
is 1%. After that, upto a certain position the error in this approach increases with the increase of
wall units. Then, the error decreases and at y™ ~ 147.50 it becomes zero. After this position
the error increases gradually with the increase of wall units. It is worth noting here that the
errors generated in LES-AWM approach are smaller than that in the LES-NWM approach at
maximum positions.

TABLE 1. Percentage of relative errors in mean velocity.

yT Error in LES-NWM  Error in LES-AWM

29.50 5.51% 1.00%
88.50 8.78% 2.80%
147.50 6.59% 0%

324.50 2.94% 1.04%
442.50 1.19% 1.71%

Figure 3(a, b, c) show the DNS and LES profiles of root mean square(r.m.s.) of velocity
components normalized by the wall shear velocity defined as

U s, =\ (U2) — (ug)? / ur (1.2)

Uy s, = (U3) — (uy)” / Ur (7.3)

U s = ) (u2) — (us)? / ur (7.4)

Figure 3(a) reveals that above the wall the LES-AWM profile of streamwise root mean
square velocity starts with 2.02 at y™ =~ 29.5. At this position the value of the DNS and
LES-NWM profiles are about 2.48 and 3.54 respectively. After this position the value of LES-
AWM profile increases with the increase of wall units and attains the maximum value of about
2.50 at y™ ~ 88.5. Where, the value of the DNS and LES-NWM profiles are respectively 1.79
and 2.29. Beyond y ' ~ 88.5 the trend of LES-AWM profile is always decreasing like the pat-
tern of DNS and LES-NWM profiles until end of the range. Although there exists a noticeable
discrepancy from the DNS and LES-NWM profiles at the near wall region, but away from the
wall the LES-AWM profile shows closer agreement with the DNS and LES-NWM profiles.

The profile of wall normal root mean square velocity in wall units is shown in Figure 3(b).
From this figure it can be observed that initially from y* ~ 59 — 120, the LES-AWM profile
under predicts the DNS profile, but over predicts the LES-NWM profile. Here after, from
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FIGURE 3. Root mean square velocity profiles in wall units.

y* =~ 120 — 300, there is hardly noticeable difference between the DNS and LES-AWM
profiles. After that, in rest of the domain the LES-AWM profile under predicts the DNS profile.
It has to be noted that, after a certain position the discrepancy between the LES-NWM and
LES-AWM profiles decreases with the increase of wall units, and beyond y* ~ 460 the LES-
NWM and LES-AWM profiles are almost collapsed. However, the profile of wall normal root
mean square velocity for LES-AWM shows less discrepancy from the DNS profile than that of
the LES-NWM profile.

The spanwise root mean square velocity profiles are displayed in Figure 3(c). This figure
reveals that above the wall the LES-AWM profile starts with 1.15 near the peak value of LES-
NWM profile at y™ ~ 29.5. From this position the LES-AWM profile under predicts the DNS
profile until end of the range and over predicts the LES-NWM profile up to y™ = 440. Beyond
yT a 440, in some of the regions (y™ =~ 120 — 300) the LES-AWM and LES-NWM profiles
are almost collapsed, and in rest of the range the LES-AWM profile under predicts the LES-
NWM profile. However, in most of the region the LES-AWM profile shows closer agreement
with the DNS profile than that of the LES-NWM profile.

The profile of non-dimensional Reynolds stress, —u,, u;/ /u? corresponding to the channel
half width is shown in Figure 4. In a fully developed channel flow this profile is a straight line
when the flow reaches an equilibrium state. Our computed results clearly indicate that this is
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the case. This figure also reveals that the discrepancy of the LES-AWM profile with the DNS
and LES-NWM profiles decreases with the increase of the value of y*. Away from the wall
(y™ > 400), there is hardly noticeable difference between the three profiles.

1
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—<¢—— LES-NWM
—©6—— LES-AWM

/i
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y | TR R TII S
0O 100 200 4 300 400 500 600

y

FIGURE 4. The Reynolds stress profile in wall coordinates.

7.2. Flow Structures. We have calculated streamwise velocity () distribution at the center-
line of the channel and streamwise shear velocity (u,,) distribution at the immediate vicinity
of the wall at a non-dimensional time, ¢ = 202.20 when the flow reaches to an equilibrium
state. Using these computed data different contour plots of the flow field have been drawn and
compared with the contours obtained by Uddin and Mallik [5].

Contour of instantaneous streamwise velocity distribution at the centerline of the channel in
x — z plane is shown in Figure 5(a), (b).

FIGURE 5. Contours of streamwise velocity profiles in  — z plane for (a)
LES using no wall model [5], and (b) LES using AWM.

Figure 5(a) is obtained by Uddin and Mallik [5], where no wall model has been used in LES,
and in Figure 5(b), AWM has been used in LES. In these contour plots the value of %, ranged
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in between 19 and 22.6. The highest value of %, is indicated by a red color, and the lowest
value by a blue color. It has to be noted that in Figure 5(a) the higher values of #, appear more
densely adjacent to the centerline of the channel from both sides. But, in Figure 5(b) the higher
values appear more densely in scattered locations of the  — z plane. The distinctive features
of the flow patterns in these contour plots are that the existence of high-speed fluid regions are
more located in Figure 5(a) than that in Figure 5(b).

Contour of instantaneous streamwise shear velocity distribution at the immediate vicinity of
the wall of this channel in  — z plane is shown in Figure 6(a), (b).
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FIGURE 6. Contours of streamwise shear velocity profiles in © — z plane for
(a) LES using no wall model [5], and (b) LES using AWM.

In Figure 6(a) no wall model has been used in LES which is obtained by Uddin and Mallik
[5], and in Figure 6(b), AWM has been used in LES. The value of 4, ranged from 0.7 to 1.35 in
these contour plots. The highest value appears at red regions and lowest value at blue regions.
From these contour plots it can be observed that the regions of larger values of u,, appear more
densely in between the boundary and centerline of the channel. It is also noticeable that the
intensity of .., in Figure 6(a) is higher than that located in Figure 6(b).

Figure 7(a), (b) represents the visualization of vortical structures in the turbulent channel
flow by iso-surfaces of the second invariant () of velocity gradient tensor, which is defined as
[5,6]:

1
Q = —5 (Sij Sij — Qij Qij) (7.5)
where,
- 1 [/ 0u; 31_1,]' o 1 [/ 0u; 8ﬁj
5 = 5 (axj * axi> and i = 3 (axj 0xi) (7.6)

are respectively, the strain-rate and rotation tensors, that is, the symmetric and asymmetric part
of the velocity gradient tensor:
0u;

Ay = g = S+ % (7.7)
In Figure 7(a), no wall model has been used in LES which is obtained by Uddin and Mallik
[5], but in Figure 7(b), AWM has been applied at the near wall region. The visualized region
is the whole calculation domain. The level of the iso-surface is selected to be Q = 5. For
this value of () the vortical structures are significant and are randomly distributed over the
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turbulent flow field. Generally, it can be noted that the vortices are generated in between near
the boundary and the centerline of the channel are more intense than the ones are generated
around the centerline of the channel. It is also noticeable that the vortices are generated more
densely in Figure 7(a) than that of Figure 7(b).

FIGURE 7. Iso-surfaces of the second invariant ((Q =5) in the channel flow
for (a) LES using no wall model [5], and (b) LES using AWM.

8. CONCLUSION

A Large eddy simulation of a turbulent channel flow has been successfully carried out using
AWM at a Reynolds number, Re, = 590 with 32 x 20 x 32 grid points. To reduce the
calculation cost, the AWM lead to a significant reduction in the number of computational cells
at the near wall region. In spite of resolution limitations, the simulations are able to resolve
the essential features of the statistical fields. The statistical results are compared with the DN'S
and LES data of reference. Maximum discrepancies are found at the near wall region. In
comparison with the DNS data the computed results show better agreement than that of LES
results using no wall model. Instantaneous streamwise velocity distribution at the centerline
of the channel and streamwise shear velocity distribution at the immediate vicinity of the wall
have also been measured in the contour plots, and compared these contour plots with those of
LES data using no wall model. In our computation the higher values of streamwise velocity
appear more densely in scattered locations of the centerline x — 2 plane, and the higher values
of streamwise shear velocity appear more densely in between the boundary and centerline of
the channel. But the existence of high-speed fluid regions are less located in the computed
flow field. Visualization of the iso-surfaces of the second invariant ((Q = 5) in the turbulent
channel flow show that the flow field contains lots of tube-like vortical structures which are
randomly distributed over the turbulent flow field. The intensity of the vortical structures is
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high in between near the boundary and the centerline of the channel. But the vortices are
generated less densely in the computed flow field.
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