• 제목/요약/키워드: Turbulent drag reduction

검색결과 118건 처리시간 0.027초

중합제 첨가에 의한 항력 감소 효과에 관한 실험적 연구 (Experimental Investigation of Drag Reduction by Polymer Additives)

  • 성형진;위장우;권순홍;전호환
    • 한국해양공학회지
    • /
    • 제16권4호
    • /
    • pp.1-6
    • /
    • 2002
  • Experimental investigation of drag reduction by adding a polymer additive(polyacrylamid, N-401P) into water is carried out in a Circular Water Channel. The effect of viscosity, surface roughness and degradation as a function of running time is also measured with varying the concentration of polymer additives(20ppm,100ppm) and Reynolds numbers. Near and far wakes past a circular cylinder are observed by LDV. Drag forces are measured with a strain-gaged device. The experimental results show that around 5%-30% of drag reduction with the polymer solution are observed. The larger effects of drag reduction can be found at low range of Reynolds number, more roughened surface cylinder. The effect of polymer solution for near wakes is larger than for far wakes.

레이놀즈응력모델을 이용한 난류의 고분자물질 첨가 저항감소현상에 대한 수치해석 (Numerical Analysis of Drag-Reducing Turbulent Flow by Polymer Injection with Reynolds Stress Model)

  • 고강훈;김광용
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2000
  • A modified low-Reynolds-number Reynolds stress model is developed for the calculation of drag-reducing turbulent flows induced by polymer injection. The results without polymer injection are compared with the results of direct numerical simulation to ensure the validity of the basic model. In case of drag reduction, profiles of mean velocity and Reynolds stress components, in two-dimensional channel flow, obtained with a proper value of viscosity ratio are presented and discussed. Computed mean velocity profile is in very good agreement with experimental data. And, the qualitative behavior of Reynolds stress components with the viscosity ratio is also reasonable.

점탄성 유체의 난류 해석을 위한 수정된 $k-{\varepsilon}$ 난류모델 개발 및 혈류역학에의 적용 (DEVELOPMIN OF A MODIFIED $k-{\varepsilon}$ TURBULENCE MODEL FOR VISCO-ELASTIC FLUID AND ITS APPLICATION TO HEMODYNAMICS)

  • 노경철;유홍선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.214-220
    • /
    • 2010
  • This article described that a high Reynolds number version of a turbulence model was modified by using drag reduction to analyze the turbulent flows of non-Newtonian fluid with visco-elastic viscosity and it was applied hemodynamics which was representative of visco-elastic fluid. The turbulence characteristics of visco-elastic fluid was expanded viscous sublayer region and buffer layer region by drag reduction phenomenon and also Newtonian turbulence models does not predict because viscosity was related with shear rate of fluid flow. Hence numerical simulation using a modified turbulence model was conducted under the same conditions that were applied to obtain the experiment results and previous turbulence models and then the numerical investigation of turbulent blood flow in the stenosed artery bifurcation under periodic acceleration of the human body.

  • PDF

INVESTIGATION OF DRAG REDUCTION MECHANISM BY MICROBUBBLE INJECTION WITHIN A CHANNEL BOUNDARY LAYER USING PARTICLE TRACKING VELOCIMETRY

  • Hassan Yassin A.;Gutierrez-Torres C.C.
    • Nuclear Engineering and Technology
    • /
    • 제38권8호
    • /
    • pp.763-778
    • /
    • 2006
  • Injection of microbubbles within the turbulent boundary layer has been investigated for several years as a method to achieve drag reduction. However, the physical mechanism of this phenomenon is not yet fully understood. Experiments in a channel flow for single phase (water) and two phase (water and microbubbles) flows with various void fraction values are studied for a Reynolds number of 5128 based on the half height of the channel and bulk velocity. The state-of-the art Particle Tracking Velocimetry (PTV) measurement technique is used to measure the instantaneous full-field velocity components. Comparisons between turbulent statistical quantities with various values of local void fraction are presented to elucidate the influence of the microbubbles presence within the boundary layer. A decrease in the Reynolds stress distribution and turbulence production is obtained with the increase of microbubble concentration. The results obtained indicate a decorrelation of the streamwise and normal fluctuating velocities when microbubbles are injected within the boundary layer.

경계층 외부 수직날의 마찰저항 저감 기구에 대한 PIV 관측 (PIV Investigation on the Skin Friction Reduction Mechanism of Outer-layer Vertical Blades)

  • 박현;안남현;박성현;전호환;이인원
    • 한국가시화정보학회지
    • /
    • 제9권1호
    • /
    • pp.20-28
    • /
    • 2011
  • An experimental assessment has been made of the drag reducing efficiency of the outer-layer vertical blades, which were first devised by Hutchins. The drag reduction efficiency of the blades was reported to reach as much as 30%. However, the drag reduction efficiency was quantified only in terms of the reduction in the local skin-friction coefficient. In the present study, a series of drag force measurements in towing tank has been performed toward the assessments of the total drag reduction efficiency of the outer-layer vertical blades. A maximum 9.6% of reduction of total drag was achieved. The scale of blade geometry is found to be weakly correlated with outer variable of boundary layer. In addition, detailed flow field measurements have been performed using 2-D time resolved PIV with a view to enabling the identification of drag reduction mechanism.

미소 기포 분포의 난류 확산에 의한 점성 마찰력 저감 (Viscous Frictional Drag Reduction by Diffusion of Injecting Micro-Bubbles)

  • 문철진;김시영
    • 수산해양기술연구
    • /
    • 제30권2호
    • /
    • pp.109-115
    • /
    • 1994
  • This paper presents a new concept to reduce turbulent frictional drag by injecting micro-bubble into near the buffer layer of turbulent boundary layer on flat plate. The concentrations of micro bubble distribution in the boundary was calculater by eddy viscosity equations in the governing equations. When near region of the buffer layer of turbulent boundary layer is filled with micro-bulle of air and viscous of the region is kept low, the velocity profile in the near region should be changed substantially. Then the Reynolds stress in the region becomes less, which guide to lower velocity gradient there. It results in reduction of velocity gradient at the viscous sublayer, which gives the reduction of shear stress at the wall.

  • PDF

카본나노튜브 나노유체의 동점성계수 증가로 인한 관내 유동에서의 항력 감소 (Drag Reduction Induced by Increased Kinematic Viscosity of Nanofluids Containing Carbon Nanotubes in A Horizontal Tube)

  • 유지원;정세권;최만수
    • 한국입자에어로졸학회지
    • /
    • 제9권4호
    • /
    • pp.271-277
    • /
    • 2013
  • This article reports the drag reduction phenomenon of aqueous suspensions containing carbon nanotubes (CNTs) flowing through horizontal tubes. Stable nanofluids were prepared by using a surfactant. It is found that the drag forces of CNT nanofluids were reduced at specific flow conditions compared to the base fluid. It is found that the friction factor of CNT nanofluids was reduced up to approximately 30 % by using CNT nanofluids. Increased kinematic viscosities of CNT nanofluids are suggested to the key factors that cause the drag reduction phenomenon. In addition, transition from laminar to turbulent flow is observed to be delayed when CNT nanofluids flow in a horizontal tube, meaning that drag reduction occurs at higher flow rates, that is, at higher Reynolds numbers.

난류 유동일때 관과 channel에서 고분자와 계면활성제에 의한 마찰저항 감소에 관한 연구 (Drag Reduction by Polymer and Surfactant in Tubulent Channel and Pipe Flows)

  • 박성룡
    • 설비공학논문집
    • /
    • 제7권3호
    • /
    • pp.359-365
    • /
    • 1995
  • The drag reduction phenomenon with an additives of surfactant(STAC, stearlytrimethyl ammonium chloride) and polymer(PEO, polyethlene oxide) was investigated in fully developed turbulent pipe and channel flows at various low Reynolds numbers as well as very low additives concentration. A maximum of 70% drag reduction compared with plain water flow was found. This maximum drag reduction percentage obtained with surfactant solution was slightly higher than that of the Virk's asymptote in polymer solution.

  • PDF

3차원 2중 모형의 점성 항력 감소화 연구 (A Study Viscous Drag Reduction of Three Dimensional Double Model)

  • 김시영
    • 수산해양기술연구
    • /
    • 제30권3호
    • /
    • pp.209-219
    • /
    • 1994
  • 3차원 二重 摸型이 粘性 流體中을 운동할 때 발생하는 점성 摩擦力을 感少시키기 위하여 船體 표면에 流線 방향으로 V-홈(Riblet)의 띠를 그 표면에 부착하였다고 가정하여 점성 마찰력 감소에 관하여 難流 境界層의 特性을 계산하는 수정된 방법을 구하고 그 계산을 위한 프로그램을 작성하였다. 계산 방법으로서는 Hess & Smith의 방법에 의하여 포텐시얼 유동을 계산하고 그것으로부터 구한 유속 값들을 Momentum 적분 방정식에 이용하였다. 補助 방정식으로서는 Head의 식과 점성 마찰력에 관한 Clauser의 식을 사용하였다. 그리고 Riblet의 효과로서는 Gaudet의 실험식을 이용하였다. 그 계산 결과 선체 전표면에 유선의 방향으로 Riblets를 付着하였다고 가정하였을 경우 상당한 점성 마찰력 減少效果를 나타냈으며 Riblet를 선체 전체길이 4등분하여 각각의 표면에 부착시켰을 때도 현저한 점성 마찰력 감소 효과를 나타냈으며 특히 선수 부분의 25% 표면에 부착되었을 때가 다른 영역에 부착하였다고 가정하였을 경우보다도 가장 優秀한 效果를 나타내었다.

  • PDF

Verification of drag-reduction capabilities of stiff compliant coatings in air flow at moderate speeds

  • Boiko, Andrey V.;Kulik, Victor M.;Chun, Ho-Hwan;Lee, In-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권4호
    • /
    • pp.242-253
    • /
    • 2011
  • Skin frictional drag reduction efficiency of "stiff" compliant coating was investigated in a wind tunnel experiment. Flat plate compliant coating inserts were installed in a wind tunnel and the measurements of skin frictional drag and velocity field were carried out. The compliant coatings with varying viscoelastic properties had been prepared using different composition. In order to optimize the coating thickness, the most important design parameter, the dynamic viscoelastic properties had been determined experimentally. The aging of the materials (variation of their properties) during half a year was documented as well. A design procedure proposed by Kulik et al. (2008) was applied to get an optimal value for the coating thickness. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coatings. The compliant coatings with the thickness h = 7mm achieved 4~5% drag reduction within a velocity range 30~40 m/s. The drag reduction mechanism of the attenuation of turbulence velocity fluctuations due to the compliant coating was demonstrated. It is envisioned that larger drag reduction effect is obtainable at higher flow velocities for high speed trains and subsonic aircrafts.