Browse > Article
http://dx.doi.org/10.11629/jpaar.2013.9.4.271

Drag Reduction Induced by Increased Kinematic Viscosity of Nanofluids Containing Carbon Nanotubes in A Horizontal Tube  

Yu, Jiwon (POSCO)
Jung, Se Kwon (Hyndai Motor Group)
Choi, Mansoo (Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University)
Publication Information
Particle and aerosol research / v.9, no.4, 2013 , pp. 271-277 More about this Journal
Abstract
This article reports the drag reduction phenomenon of aqueous suspensions containing carbon nanotubes (CNTs) flowing through horizontal tubes. Stable nanofluids were prepared by using a surfactant. It is found that the drag forces of CNT nanofluids were reduced at specific flow conditions compared to the base fluid. It is found that the friction factor of CNT nanofluids was reduced up to approximately 30 % by using CNT nanofluids. Increased kinematic viscosities of CNT nanofluids are suggested to the key factors that cause the drag reduction phenomenon. In addition, transition from laminar to turbulent flow is observed to be delayed when CNT nanofluids flow in a horizontal tube, meaning that drag reduction occurs at higher flow rates, that is, at higher Reynolds numbers.
Keywords
Nanofluids; Carbon nanotube; Drag; Kinematic viscosity; Reynolds number;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barnes, H. A., Hutton, J. F., and Walters, K. (1989) An introduction to rheology, Elsevier Science Publishers, New York
2 Berber, S., Kwon, Y. K., and Tomanek, D. (2000). Unusually high thermal conductivity of carbon nanotubes, Physics Review Letter, 84, 4613-4616   DOI   ScienceOn
3 Cho, J. (2003) Improved thermal stability of LiCoO2 by nanoparticle AlPO4 coating with respect to spinel Li1.05Mn1.95O4, Electrochemistry Communications, 5, 146-148   DOI   ScienceOn
4 Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., and Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters, 79, 2252-2254   DOI   ScienceOn
5 Ding, Y. L., Alias, H., Wen, D. S., and Williams, R. A. (2006). Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat and Mass Transfer, 49, 240-250   DOI   ScienceOn
6 Draad, A. A., Kuiken, G. D. C., and Nieuwstadt, F. T. M. (1998). Laminar‐turbulent transition in pipe flow for Newtonian and non‐Newtonian fluids, Journal of Fluid Mechanics 377, 267-312   DOI   ScienceOn
7 Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol‐based nanofluids containing copper nanoparticles, Applied Physics Letters, 78, 718-720.   DOI   ScienceOn
8 Hirata, A., and Yoshioka, N. (2004). Sliding friction properties of carbon nanotube coatings deposited by microwave plasma chemical vapor deposition, Tribology International, 37, 893-898   DOI   ScienceOn
9 Hone, J., Whitney, M., Piskoti, C., and Zettl, A. (1999). Thermal conductivity of single‐walled carbon nanotubes, Physics Review B, 59, R2514-R2516
10 Jang, S. P. and Choi, S. U. S. (2004). Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Applied Physics Letters, 84, 4316-4318.   DOI   ScienceOn
11 Kim, P., Shi, L., Majumdar, A., and McEuen, P. L. (2001). Thermal transport measurements of individual multiwalled nanotubes, Physics Review Letter, 8721
12 Ko, G. H., Heo, K., Lee, K., Kim, D. S., Kim, C., Sohn, Y., and Choi, M. (2007). An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube, International Journal of Heat and Mass Transfer, 50, 4749-4753   DOI   ScienceOn
13 Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles, Journal of Heat Transfer, 121, 280-289.   DOI
14 Potschke, P., Fornes, T. D., and Paul, D. R. (2002). Rheological behavior of multiwalled carbon nanotube/polycarbonate composites, Polymer 43, 3247-3255   DOI   ScienceOn
15 Suhr, J., Koratkar, N., Keblinski, P., and Ajayan, P. (2005). Viscoelasticity in carbon nanotube composites, Nature Materials, 4, 134-137   DOI   ScienceOn
16 White, F.M (2003) Fluid Mechanics, fifth ed., Macgraw- Hill, New York
17 Xie, H., Wang, J., Xi, T., and Liu, Y. (2002). Thermal conductivity of suspensions containing nanosized SiC particles, International Journal of Thermophysics, 23, 571-580
18 Xie, H. Q., Lee, H., Youn, W., and Choi, M. (2003). Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, Journal of Applied Physics, 94, 4967-4971   DOI   ScienceOn
19 Xuan, Y. M. and Li, Q. (2000). Heat transfer enhancement of nanofluids, International Journal of Heat Fluid Flow, 21, 58-64.   DOI   ScienceOn