• Title/Summary/Keyword: Turbulent Transport

Search Result 237, Processing Time 0.028 seconds

Analysis of the Coupled Turbulent Flow and Macroscopic Solidification in Twin-Roll Continuous Casting Process (쌍롤식 연속주조공정에서의 난류유동 및 거시적응고 해석)

  • Kim, Deok-Su;Kim, U-Seung;Jo, Gi-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.285-295
    • /
    • 2001
  • The transport phenomena in a wedge-shaped pool of twin-roll continuous caster are affected by the various operating parameters such as the melt-feed pattern, roll-gap thickness, melt-superheat, and casting speed. A computer program has been developed for analyzing the two-dimensional, steady conservation equations for transport phenomena during twin-roll continuous casting process in order to estimate the turbulent melt-flow, temperature fields, and solidification in the wedge-shaped pool. The turbulent characteristics of the melt-flow were considered using a low-Reynolds-number K-$\xi$ turbulence model. Based on the computer program, the effects of the different melt-feed patterns, roll-gap thicknesses, and superheats of melt on the variations of the velocity and temperature distributions, and the mushy solidification were examined. The results show that the liquidus line is located considerably at the upstream region, and in the lower region appear the well-mixed melt-flow and most widely developed mushy zone. Besides, the variation of melt-flow due to varying melt-feed patterns, affects mainly the liquidus line, and scarcely has effects on the solidus line in the outlet region.

A Study on the Development of Low Reynolds Number k-$\varepsilon$ Turbulence Model (저레이놀즈수 k-$\varepsilon$난류모형 개선에 관한 연구)

  • 김명호;신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1940-1954
    • /
    • 1992
  • Fine grid computations were attempted to analyze the turbulent flows in the near wall low Reynolds number region and the numerical analyses were incorporated by a finite-volume discretization with full find grid system and low Reynolds number k-.epsilon. model was employed in this region. For the improvement of low Reynolds number k-.epsilon. model, modification coefficient of eddy viscosity $f_{\mu}$ was derived as a function of turbulent Reynolds number $R_{+}$ and nondimensional length $y^{+}$ from the concept of two length scales of dissipation rate of turbulent kinetic energy. The modification coefficient $f_{\epsilon}$ in .epsilon. transport equation was also derived theoretically. In the turbulent kinetic energy equation, pressure diffusion term was added in order to consider low Reynolds number region effect. The main characteristics of this low Reynolds number k-.epsilon. model were founded as : (1) In high Reynolds number region, the present model has limiting behavior which approaches to the high Reynolds number model. (2) Present low Reynolds number k-.epsilon. model dose not need additional empirical constants for the transport equations of turbulent kinetic energy and dissipation of turbulent kinetic energy in order to consider wall effect. Present low Reynolds number turbulence model was tested in the pipe flow and obtained improved results in velocity profiles and Reynolds stress distributions compared with those from other k-.epsilon. models.s.s.

Analysis of Turbulent Heat Transfer of Gas-Solid Suspension Flow In Pipes (固體分末 이 浮上된 二相亂流 管流動 의 熱傳達 解析)

  • 김재웅;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.331-340
    • /
    • 1982
  • Numerical analysis is made on the turbulent heat transfer with suspension of solid particles in circular tube with constant heat flux. The mean motion of suspending particles in mixture is treated as the secondary gas flow with virtual density and viscosity. Our modeling of turbulent transport phenomena of suspension flow is based on this assumption and conventional mixing length theory. This paper gives the evidence that the mixing length models can be extended to close the governing equations for two phase turbulent flow with solid boundary at a first order level. Results on Nusselt numbers obtained by analytical treatments are compared with available experimental data and discussed. They suggest that the most important parameters of two phase turbulent heat transfer phenomena are relative particle diameter to pipe diameter, gas-solid loading ratio, and specific heat of suspending material.

The Structure of Axisymmeric Turbulent Diffusion Flame(II) (재순환 영역이 있는 축대칭 난류 확산화염의 구조 (II))

  • 이병무;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.70-77
    • /
    • 1986
  • Turbulent mixing field with recirculating flow which is formed by injecting gaseous fuel on the main air stream is solved numerically by a finite difference method. The turbulence model for obtaining transport properties was k-.epsilon. model, which was obtained from turbulent kinetic energy and its dissipation rate. Considering the effects of streamline curvature, modified k-.epsilon model was used. Generally, Modified k-.epsilon. model makes better predictions than standard model, and from this result, it is recognized that standard model has deficiency when applied to turbulent recirculating flows, and that modified k-.epsilon. model takes into account of streamline curvature effects properly. Meanwhile, A more study will be necessary to find the reason why large differences between predicted and experimental turbulent kinetic energy exist.

An Experimental Study About The Intermittent Flow Field in The Transition Region of a Turbulent Round Jet (발달하는 원형제트의 간헐적 유동에 관한 실험적 연구)

  • 김숭기;조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.230-240
    • /
    • 1990
  • An exprimental research has been carried out to find the intermittent flow pattern in the transition region of a turbulent round jet in order to elucidate detailed turbulence structure and to accumulate basic data necessary for computational turbulence modelling. Turbulent signals were processed digitally to obtain conventional or conditional velocity components. The high-order conditional correlations obtained in this study showed similar trends as those of other free shear flows. It was found that the non-turbulent fluid contributes negligibly to the turbulent kinetic energy production and its diffusive transport and that the diffusion by bulk convection has the same order of magnitude as the gradient diffusion in the free boundary region. The statistical analyses such as flatness factor, skewness factor and probability density functions of turbulent and non-turbulent zone durations have also been performed.

Direct numerical simulation of the turbulent boundary layer with rod-roughened wall (표면조도가 있는 난류경계층에서의 직접수치모사)

  • Lee, Seung-Hyun;Sung, Hyung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.445-448
    • /
    • 2006
  • The effects of surface roughness on a spatially-developing turbulent boundary layer (TBL) were investigated by performing direct numerical simulations of TBLs over rough and smooth walls. The Reynolds number based on the momentum thickness was varied in the range $Re_{\theta}=300{\sim}1400$. The roughness elements used were periodically arranged two-dimensional spanwise rods, and the roughness height was $k=1.5{\theta}_{in}$, which corresponds to $k/{\delta}=0.045{\sim}0.125$. To avoid generating a rough wall inflow, which is prohibitively difficult, a step change from smooth to rough was placed $80{\theta}_{in}$ downstream from the inlet. The spatially-developing characteristics of the rough-wall TBL were examined. Along the streamwise direction, the friction velocity approached a constant value and a self-preserving form of the turbulent stress was obtained. Introduction of the roughness elements affected the turbulent stress not only in the roughness sublayer but also in the outer layer. Despite the roughness-induced increase of the turbulent stress in the outer layer, the roughness had only a relatively small effect on the anisotropic Reynolds stress tensor in the outer layer. Inspection of the triple products of the velocity fluctuations revealed that introducing the roughness elements onto the smooth wall had a marked effect on vertical turbulent transport across the whole TBL. By contrast, good surface similarity in the outer layer was obtained for the third-order moments of the velocity fluctuations.

  • PDF

Second-Moment Closure Modelling of Particle-Laden Homogeneous Turbulent Shear Flows (고체입자가 부상된 균질 난류 전단유동의 2차-모멘트 모형화)

  • Shin, Jong-Keun;Seo, Jeong-Sik;Han, Seong-Ho;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.29-39
    • /
    • 2007
  • A second-moment closure is applied to the prediction of a homogeneous turbulent shear flow laden with mono-size particles. The closure is curried out based on a 'two-fluid' methodology in which both carrier and dispersed phases are considered in the Eulerian frame. To reduce the number of coupled differential equations to be solved, Reynolds stress transport equations and algebraic stress models are judiciously combined to obtain the Reynolds stress of carrier and dispersed phases in the mean momentum equation. That is, the Reynolds stress components for carrier and dispersed phases are solved by modelled transport equations, but the fluid-particle velocity covariance tensors are treated by the algebraic models. The present predictions for all the components of Reynolds stresses are compared to the DNS data. Reasonable agreements are observed in all the components, and the effects of the coupling of carrier and dispersed phases are properly captured in every aspects.

A Study on Prediction of Collection Efficiency of Electrostatic Precipitator Using Eulerian Numerical Analysis (오일러리안 수치해석법을 이용한 전기집진기의 집진효율 예측에 관한 연구)

  • Park, Jeong-Ho;Chun, Chung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.618-623
    • /
    • 2001
  • The transport of charged particles in electrostatic precipitator is investigated by Eulerian numerical analysis. Collection efficiencies are calculated using various combinations of the assumptions about flow field, turbulent diffusivity and boundary condition at collecting electrode. The characteristics of calculated collection efficiencies are compared with the trends of published experimental results. It is found that the collection efficiency for the case using nonuniform turbulent flow field, nonuniform turbulent diffusivity and zero concentration boundary condition at collecting electrode is the most suitable for the prediction of collection efficiency of electrostatic precipitator.

  • PDF

Turbulent flow in annuli depending on the position of roughness (거칠기 위치에 따른 이중관 내의 난류유동)

  • An, Su-Hwan;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.891-899
    • /
    • 1997
  • This paper presents the results of a detailed experimental examination of fully developed asymmetric flows between annular tubes with square-ribbed surface roughness. The main emphasis of the research has been on establishing the turbulence structure, particularly in the central region of the channel where the two dissimilar wall flows interact. Measurements have included profiles of time mean velocities, turbulence intensities, turbulent shear stresses, triple velocity correlations, skewness, and flatness. The region of greatest interaction is characterized by strong diffusional transport of turbulent shear stress and kinetic energy from rough toward the smooth wall region, giving rise to an appreciable separation between the planes of zero shear stresses depending on positions of roughness on the walls.

Prediction of 2-Dimensional Unsteady Thermal Discharge into a Reservoir (온수의 표면방출에 의한 2차원 비정상 난류 열확산 의 예측)

  • 박상우;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.451-460
    • /
    • 1983
  • Computational four-equation turbulence model is developed and is applied to predict twodimensional unsteady thermal surface discharge into a reservoir. Turbulent stresses and heat fluxes in the momentum and energy equations are determined from transport equations for the turbulent kinetic energy (R), isotropic rate of kinetic energy dissipation (.epsilon.), mean square temperature variance (theta. over bar $^{2}$), and rate of destruction of the temperature variance (.epsilon. $_{\theta}$). Computational results by four-equation model are favorably compared with those obtained by an extended two-equation model. Added advantage of the four-equation model is that it yields quantitative information about the ratio between the velocity time scale and the thermal time scale and more detailed information about turbulent structure. Predicted time scale ratio is within experimental observations by others. Although the mean velocity and temperature fields are similarly predicted by both models, it is found that the four-equation model is preferably candidate for prediction of highly buoyant turbulent flows.