• 제목/요약/키워드: Turbulent Transport

검색결과 239건 처리시간 0.019초

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Coolant Leaking in a T-Branch of Square Cross-Section

  • Choi, Young-Don;Hong, Seok-Woo;Park, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권2호
    • /
    • pp.51-60
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. Standard k-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • 제2권3호
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

이차원 표층방류 밀도분류의 k-$\varepsilon$ 모델에 의한 수치해석 (Numerical Analysis of Two-Dimensional Surface Buoyant Jets by k-$\varepsilon$ Turbulence Model)

  • 허재영;최한기;강주복
    • 한국해안해양공학회지
    • /
    • 제3권2호
    • /
    • pp.81-91
    • /
    • 1991
  • 이차원 표층방류 밀도분류의 거동을 조사하기 위하여 k-$\varepsilon$ 이방정식 수치모델을 개발하였다. 평균류 및 난류수송에 관한 계산결과를 실험결과와 비교하여 본 수치모델이 이들의 흐름특성을 양호하게 예측할 수 있음을 확인하였다. 방류구에 있어서의 k 및 $\varepsilon$의 설정이 표층 밀도분류의 흐름에 미치는 영향을 정량적으로 평가하였다. 또한, 많은 연구에서 무시되어 왔던 $\varepsilon$ 방정식에 있어서의 부력생성항 및 계수 $C\varepsilon$$_3$의 값에 대한 검토를 행하여 흐름의 전개에 미치는 영향을 조사하였다. 이차원표층 밀도분류에 관한 계산결과를 제시하고 중요한 몇가지 흐름특성에 대하여 토의하였다.

  • PDF

연안유속분포 형상에 미치는 제인자 (Factors Affecting Longshore Current Profile)

  • 김경호;윤영호;조재희
    • 한국해안해양공학회지
    • /
    • 제3권2호
    • /
    • pp.108-115
    • /
    • 1991
  • 쇄파후 발생하는 에너지 손실과 밀접한 관계를 가지며 또한 쇄파대내에 국한되어 분포하고 있는 연안류 분포형상과 그 형상에 영향을 미치는 제인자에 대해서 고찰하였다. 연안류는 연안역의 물질확산에 관계하며 연안표사와 밀접한 관계가 있어 이에 대한 구명은 공학상으로 커다란 의미를 갖는다. 계산결과로부터 수평확산계수, 마찰계수, 파향각, 파형경사 및 해저경사 등의 연안류의 유속 분포형상에 미치는 영향을 검토하고, 계산의 타당성을 검토하기 위해 기왕의 연구결과와 본 연구에서의 계산결과를 비교 검토한다.

  • PDF

열성층 해석 난류모델 평가 (EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRATIFICATION)

  • 최석기;김세윤;김성오
    • 한국전산유체공학회지
    • /
    • 제10권4호통권31호
    • /
    • pp.12-17
    • /
    • 2005
  • A computational study of evaluation of current turbulence models is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor. The turbulence models tested in the present study are the two-layer model, the shear stress transport (SST) model, the v2-f model and the elliptic blending mode(EBM). The performances of the turbulence models are evaluated by applying them to the thermal stratification experiment conducted at JNC (Japan Nuclear Corporation). The algebraic flux model is used for treating the turbulent heat flux for the two-layer model and the SST model, and there exist little differences between the two turbulence models in predicting the temporal variation of temperature. The v2-f model and the elliptic blending model better predict the steep gradient of temperature at the interface of thermal stratification, and the v2-f model and elliptic blending model predict properly the oscillation of the ensemble-averaged temperature. In general the overall performance of the elliptic blending model is better than the v2-f model in the prediction of the amplitude and frequency of the temperature oscillation.

다양한 막냉각 홀 형상에 대한 막냉각 효율의 수치해석 (NUMERICAL STUDY ON FILM-COOLING EFFECTIVENESS FOR VARIOUS FILM-COOLING HOLE SCHEMES)

  • 김선민;이기돈;김광용
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.92-99
    • /
    • 2011
  • In order to protect the turbine blade from working fluid of high temperature, many cooling techniques such as internal convection cooling, film cooling, impinging jet cooling and thermal barrier coating have been developed. With all other things, film-cooling has been widely used as the important alternative. In the present work, numerical analysis has been performed to investigate and to compare the film-cooling performance of various film-cooling hole schemes such as cylindrical, crescent, louver, and dumbbell holes. To analyze the turbulent flow and the film-cooling mechanism, three-dimensional Reynolds-averaged Navier-Stokes analysis has been performed with shear stress transport turbulence model. The validation of numerical results has been assessed in comparison with experimental data. The characteristics of fluid flow and the film-cooling performance for each shaped hole have been investigated and evaluated in terms of centerline, laterally averaged and spatially averaged film-cooling effectivenesses. Among the film cooling holes, the dumbbell shaped hole shows better film-cooling effectiveness than the other shaped holes. And the louver and cylindrical shaped hole show the worst film cooling performance, and concentrated flows on near the centerline only.

곡관부 열전달 성능 강화를 위한 에어포일형 가이드 베인의 형상 최적설계 (SHAPE OPTIMIZATION OF THE AIRFOIL-GUIDE VANES IN THE TURNING REGION FOR A ROTATING TWO-PASS CHANNEL)

  • 문미애;김광용
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.1-10
    • /
    • 2012
  • This paper presents the numerical simulation results of heat transfer and friction loss for a rotating two-pass duct with the airfoil-guide vanes in the turning region. The Kriging model is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of flow field and heat transfer with shear stress transport turbulent model. To improve the heat transfer performance, angle and location of the airfoil-guide vanes have been selected as design variables. The optimization problem has been defined as a minimization of the objective function, which is defined as a linear combination of heat transfer related term and friction loss related term with a weight factor. The airfoil-guide vanes in the turning region keep the high level of heat transfer while the friction loss has a low value. By comparing the presence or absence of airfoil-guide vanes, it is shown that the airfoil-guide vanes exhibited the best heat transfer performance to improve the blade cooling except the first passage.

후향계단 DDES 해석의 길이척도 영향 분석 (EFFECT OF LENGTH-SCALE IN DDES FOR BACKWARD-FACING STEP FLOW)

  • 이충연;사정환;박수형;이은석;이진익;이광섭
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.24-31
    • /
    • 2012
  • Effects of the subgrid length-scale in the Delayed-Detached Eddy Simulation(DDES) are investigated based on the Spalart-Allmaras(S-A) and the k-$\omega$ Shear Stress Transport(SST) turbulence models. Driver & Seegmiller's experimental results are used to validate numerical results. Grid convergence with grid resolution and subgrid length-scale is investigated. The simulation results show that the volume method for the subgrid length-scale is more resistant to unfavorable effects of the grid size in the periodic direction than the maximum method. Using a sufficient grid resolution and an appropriate subgrid length-scale, both S-A based DDES and SST based DDES methods can provide a good correlation with the experimental data.

산림 바람장 해석을 위한 전산유체역학 코드들의 벤치마크 검증 (BENCHMARK TESTS FOR CFD CODES FOR THE ANALYSIS OF WIND FIELD IN THE FOREST)

  • 박태완;장세명;이병두
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.11-20
    • /
    • 2012
  • In this paper, the authors test various open codes and commercial codes based on CFD technology on the wind field around the complex terrain, which is a very important transport physics in the event of forrest fire. To study the physical mechanism inside the transition from surface fire to crown fire, the wake flow behind a parallel array of trees is studied numerically to show the flow separation in the turbulent boundary layer. Two sites near to Kunsan National University are chosen for the measurement of real wind field, and obtained data are compared with those from various computational codes such as Wind-Ninja, NIST-FDS, ANSYS-CFX, and ANSYS-FlUENT, etc. Through this research, feasibility and accuracy of the present CFD codes are investigated quantitatively, compared with the measured data with AWS.

Numerical simulations of a horizontal axis water turbine designed for underwater mooring platforms

  • Tian, Wenlong;Song, Baowei;VanZwieten, James H.;Pyakurel, Parakram;Li, Yanjun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권1호
    • /
    • pp.73-82
    • /
    • 2016
  • In order to extend the operational life of Underwater Moored Platforms (UMPs), a horizontal axis water turbine is designed to supply energy for the UMPs. The turbine, equipped with controllable blades, can be opened to generate power and charge the UMPs in moored state. Three-dimensional Computational Fluid Dynamics (CFD) simulations are performed to study the characteristics of power, thrust and the wake of the turbine. Particularly, the effect of the installation position of the turbine is considered. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS) equations and the shear stress transport ${\kappa}-{\omega}$ turbulent model is utilized. The numerical method is validated using existing experimental data. The simulation results show that this turbine has a maximum power coefficient of 0.327 when the turbine is installed near the tail of the UMP. The flow structure near the blade and in the wake are also discussed.