후향계단 DDES 해석의 길이척도 영향 분석

이 충 연¹, 사 정 환¹, 박 수 형^{*1}, 이 은 석², 이 진 익², 이 광 섭² ¹건국대학교 항공우주정보시스템공학과 ²국방과학연구소

EFFECT OF LENGTH-SCALE IN DDES FOR BACKWARD-FACING STEP FLOW

C.Y. Lee,¹ J.H. Sa,¹ S.H. Park,^{*1} E.S. Lee,² J.I. Lee² and K.S. Lee²

¹Dept. of Aerospace Information Engineering, Konkuk Univ. ²Agency for Defense Development, Korea

Effects of the subgrid length-scale in the Delayed-Detached Eddy Simulation(DDES) are investigated based on the Spalart-Allmaras(S-A) and the k- ω Shear Stress Transport(SST) turbulence models. Driver & Seegmiller's experimental results are used to validate numerical results. Grid convergence with grid resolution and subgrid length-scale is investigated. The simulation results show that the volume method for the subgrid length-scale is more resistant to unfavorable effects of the grid size in the periodic direction than the maximum method. Using a sufficient grid resolution and an appropriate subgrid length-scale, both S-A based DDES and SST based DDES methods can provide a good correlation with the experimental data.

Key Words : 후향계단(Backward-Facing Step), 난류유동(Turbulent Flow), 비정상유동(Unsteady Flow), Delayed-Detached Eddy Simulation(DDES)

1. 서 론

항공기 표면의 구멍이나 이음새 등으로 인해 표면을 흐르 던 유동이 급확대(sudden expansion)되는 경우가 있는데 이를 후향계단의 문제로 단순화 하여 해석 할 수 있다. 이와 같은 후향계단의 상류에서는 박리가 없는 경계층이 존재하며, 계단 의 끝단에서부터 유동의 박리(separation)가 발생하고 전단층 (shear layer)과 재순환(recirculation), 재부착(reattachment)과 같 은 여러 현상이 존재하며, 이에 대한 많은 연구가 활발히 진 행되고 있다.[1,2].

RANS 난류모델은 벽면에 부착된 난류경계층과 자유전단 류(free shear flow)에 대한 모델이므로 난류경계층은 잘 모사 하나, 박리유동에서는 Navier-Stokes 방정식을 직접 수치적으 로 계산하는 DNS(Direct Numerical Simulation)나 격자크기 보 다 작은 eddy를 subgrid scale 모델링을 이용해 filtering하는

* Corresponding author, E-mail: pish@konkuk.ac.kr DOI http://dx.doi.org/10.6112/kscfe.2012.17.4.024 © KSCFE 2012 LES(Large Eddy Simulation)이 더 잘 모사한다. 그러나 DNS나 LES의 경우 계산비용에 많은 부담이 되기 때문에 Spalart 등 [3,4]은 기존의 Spalart-Allmaras(S-A) 난류모델[5]을 기반으로 한 Detached Eddy Simulation (DES)/ Delayed-DES 모델을 제안 하였다. 이는 난류경계층은 RANS로 모델링하면서 박리영역 은 LES로 모델링하는 방법이다. 또한, Travin 등[6]은 이와 같 은 방법으로 Shear Stress Transport(SST) 난류모델을 기반으로 한 DES 모델을 제안하였다. 이상의 DES/DDES 기법은 격자 크기와 구성 등 격자가 해에 미치는 영향이 매우 큰 것으로 알려져 있다.

본 연구에서는 격자크기와 길이척도가 DDES 해석에 미치 는 영향을 알아볼 목적으로 Spalart 등[4]이 제안한 SA-DDES 모델과 Sainte-Rose 등[1]이 제안한 SST-DDES 모델을 Driver & Seegmiller[7]의 후향계단 문제에 적용하여 여러 격자크기와 길이척도에 대해 해석을 수행하였다.

2. 수치해석 기법

지배방정식으로 예조건화된 압축성 Navier-Stokes 방정식을 사용하였다[8]. 비점성 유속벡터는 5차 정확도를 갖는 풍상차

Received: October 4, 2012, Revised: September 7, 2012, Accepted: September 9, 2012.

분 기법을 사용하였다. 점성 유속벡터의 경우 4차 정확도를 갖는 중심차분을 사용하였다. 2차의 시간정확도를 얻기 위해 예조건화된 이중시간 대각 ADI (dual-time diagonalized ADI) 기법을 사용하였다[9]. 본 논문에서는 자세한 수치기법은 생 략하도록 하며, 수치기법과 관련된 입력변수들을 동일하게 설 정하여 모든 계산을 수행하였다.

2.1 지배방정식

예조건화된 압축성 Navier-Stokes 방정식은 다음과 같다.

$$\Gamma \frac{\partial q}{\partial \tau} + \frac{\partial w}{\partial t} + \frac{\partial (f_j - f_{\nu j})}{\partial x_i} = 0 \quad j = 1, 2, 3.$$
 (1)

$$q = [p, u_i, T]^T \tag{2}$$

$$w = [\rho, \rho u_i, \rho E]^T \tag{3}$$

$$f_j = [\rho u_{j,} \ \rho u_j u_i + p \delta_{ij}, \ \rho u_j H]^T \tag{4}$$

$$f_{vj} = [0, \tau_{ij}, u_j(\tau_{ij}) - q_j]^T$$
(5)

여기서 q는 보존형의 유동변수벡터(conservative variable vector), f_j 와 $f_{\nu j}$ 는 각 방향으로의 비점성 유속벡터(inviscid flux vector)와 점성 유속벡터(viscous flux vector)를 나타낸다.

예조건화 행렬 Γ 는 다음과 같이 정의된다.

$$\boldsymbol{\Gamma} = \begin{pmatrix} \Theta + 1/RT & 0 & 0 & 0 & -\rho/T \\ u[\Theta + 1/RT] & \rho & 0 & 0 & -\rho u/T \\ v[\Theta + 1/RT] & 0 & \rho & 0 & -\rho v/T \\ w[\Theta + 1/RT] & 0 & 0 & \rho & -\rho w/T \\ H[\Theta + 1/RT] - 1 & \rho u & \rho v & \rho w & \rho[C_p - H/T] \end{pmatrix}$$
(6)

지배방정식에서 사용된 ρ , u_j , p, T, E, H는 각각 밀도, x_j 방향으로 속도성분, 압력, 온도, 총에너지 및 총 엔탈피를 의미하며, τ_l 과 τ_t 는 각각 층류와 난류에 의한 점성 응력텐서 (stress tensor)를, q_j 는 j 방향의 열유속을 나타내고 다음과 같 이 표현된다.

$$p = \rho(\gamma - 1)[E - \frac{u_i u_j}{2} - k], \ H = E + \frac{p}{\rho}$$
 (7)

$$\tau_{ij} = 2\mu_l (S_{ij} - \frac{1}{3}S_{kk}\delta_{ij}) \tag{8}$$

$$\tau_{ij}^{*} = 2\mu_{t} \left(S_{ij} - \frac{1}{3} S_{kk} \delta_{ij} \right) - \frac{2}{3} \rho k \delta_{ij}$$
(9)

$$q_{j} = -\frac{\gamma R}{\gamma - 1} \left(\frac{\mu_{l}}{\Pr_{l}} + \frac{\mu_{t}}{\Pr_{t}} \right) \frac{\partial}{\partial x_{j}} \left(\frac{p}{\rho} \right)$$
(10)

여기서 γ, R은 비열비, 기체상수이고, Pr_l, Pr_t는 층류와 난 류 Prandtl수이다. 층류 점성계수 μ_l은 이상기체(perfect gas) 유동의 경우, 온도만의 함수로 표현되는 Sutherland 법칙을 사 용하여 결정할 수 있다.

2.2 난류모델

Spalart 등[2]은 S-A RANS 모델에 기반을 둔 DES 모델링 을 제안하였는데, 이는 난류경계층을 RANS로 모델링하고 박 리영역을 LES로 모델링하는 방법이다. 그러나 기존의 DES97 모델은 길이척도가 격자간격에만 의존하게 되기 때문에 RANS와 LES가 중첩되는 영역에서 심각한 격자의존성을 나 타내거나, LES 모델로 빠르게 천이되어 난류경계층이 층류화 되는 문제점을 가지게 된다. 이에 대한 해결책으로 SST 모델 의 결합함수(blending function)를 도입하여 경계층에서 격자간 격의 길이척도가 0이 되도록 DES97모델을 수정하였다. S-A 모델에서 결함함수의 역할을 하는 것은 매개변수 r이고, Spalart은 매개변수를 다음과 같이 수정하여 길이척도를 정의 한 Delayed DES기법을 제안하였다[4].

2.2.1 S-A DDES 난류모델

먼저, S-A RANS 모델은 다음과 같이 쓸 수 있다.

$$\frac{\partial \rho \nu_{t}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\rho \widetilde{\nu}_{t} v_{j} \right) = C_{b1} \widetilde{S} \rho \widetilde{\nu}_{t} + \frac{1}{\sigma} \frac{\partial}{\partial x_{j}} \left[\left(\rho \nu_{l} + \rho \widetilde{\nu}_{t} \right) \frac{\partial \widetilde{\nu}_{t}}{\partial x_{j}} \right] + \frac{C_{b1} \rho}{\sigma} \frac{\partial \widetilde{\nu}_{t}}{\partial x_{j}} \frac{\partial \widetilde{\nu}_{t}}{\partial x_{j}} - \rho C_{w1} f_{w} \left(\frac{\widetilde{\nu}_{t}}{d} \right)^{2}$$
(11)

여기서 우변 첫째 항은 생성항이고, 두 번째와 세 번째 항은 확산항이며, 네 번째 항은 소산항이다. 위의 소산항에서 *d*는 가장 가까운 벽과의 거리이다. LES 기법의 filtering 개념에 착 안하여, RANS 난류모델의 길이척도를 격자간격으로 치환하 는 것이 DES 기법의 핵심이 된다. 식 (11)의 *d*를 새로운 길 이척도 *l* 로 대체하며, 이 새로운 길이척도는 격자간격 Δ에 기초하고 있고 다음과 같이 정의된다.

$$l = d - f_d \max\left(0, d - C_{DES}\Delta\right) \tag{12}$$

여기서 경험함수 *C_{DES}*는 문제에 따라 달라지는 모델상수이 며 본 연구에서는 0.65를 사용하였다. 위의 식에서 △는 격자 의 크기를 subgrid의 길이척도로 변환해 주는 함수로서 volume(vol) 방법과 maximum(max) 방법을 적용할 수 있다. 먼저 Spalart 등[3]이 제시한 DES97은 max 방법을 제안하 였는데, 이는 계산격자 x, y, z 각 방향에서 가장 큰 격자간 격을 사용하며 이를 식으로 나타내면 다음과 같다.

$$\Delta = \max(\Delta x, \Delta y, \Delta y) \tag{13}$$

이와 달리 셀 체적에 대한 기하평균(geometric mean)을 길 이척도로 사용할 수 있으며, 다음과 같이 나타낼 수 있다.

$$\Delta = (\Delta x \Delta y \Delta y)^{1/3} \tag{14}$$

본 논문에서는 편의상 vol 방법으로 정의한다. vol 방법은 LES에서 격자크기를 filter 크기로 사용하는 방법과 유사하며, DDES에 적용 할 경우 박리유동에서의 소산율이 적어 LES에 근접하게 작동하는 장점이 있다[1,10].

분포함수 fd는 다음과 같다.

$$f_d \equiv 1 - \tanh\left(\left[8r_d\right]^3\right) \tag{15}$$

$$r_d \equiv \frac{\nu_t + \nu}{\sqrt{U_{i,j}U_{i,j}\kappa^2 d^2}} \tag{16}$$

여기서 $\tilde{\nu_t}$ 는 동적 eddy 점성, $\tilde{\nu}$ 는 분자 점성, U_{ij} 는 속도 구 배, κ 는 Karman 상수, d는 벽에 가장 가까운 거리이다.

S-A 모델에서의 r과 유사하게 매개변수 r_d 가 1이면 RANS 모델로 회귀하며 0으로 감소하면 점진적으로 경계층의 모서 리로 향하게 된다. 따라서 새로운 길이척도는 f_d 가 0이면 $\tilde{l} = d$ 가 되어 RANS 모드로 동작하도록 하며, f_d 가 1이면 $\tilde{d} = \min(d, C_{DES}\Delta)$ 이 되어 DES97 모델이 된다. 식 (15)에서 상수 값은 평판 난류경계층의 DDES 검증에서 경계층내부에 서 RANS 모델과 일치하도록 결정된 값이다.

2.2.2 SST DDES 난류모델

S-A DDES 난류모델과 마찬가지로 SST DDES 난류모델도 k-w SST 난류모델을 기반으로 하며 이를 다음과 같이 식 (17)과 (18)로 나타낼 수 있다.

Model	Δ	
S-A DDES	$(\Delta x \Delta y \Delta z)^{1/3}$	vol
	$\max(\Delta x, \Delta y, \Delta z)$	max
SST DDES	$(\Delta x \Delta y \Delta z)^{1/3}$	vol
	$\max(\Delta x, \Delta y, \Delta z)$	max

Table 1 Turbulent models used

Fig. 1 Schematic of the Backward-facing step

$$\frac{\frac{\partial \rho k}{\partial t} + \frac{\partial \rho u_j k}{\partial x_j}}{\frac{\partial \rho u_j k}{\partial x_j}} = P_k - \beta^* \rho k \omega + \frac{\partial}{\partial x_j} \left[\left(\mu + \sigma_k \mu_l \right) \frac{\partial k}{\partial x_j} \right]$$
(17)

$$\frac{\partial \rho \omega}{\partial t} + \frac{\partial \rho u_j \omega}{\partial x_j} = \alpha \frac{\omega}{k} P_K - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left[\left(\mu + \sigma_\omega \mu_t \right) \frac{\partial \omega}{\partial x_j} \right] + 2 (1 - F_1) \rho a_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j}$$
(18)

여기서 난류운동에너지 방정식인 식 (17)의 우변 두 번째 항 인 난류에너지 소산항을 길이척도로 나타내면 다음과 같다.

$$\rho \beta^* k w = \rho \beta^* \frac{k^{3/2}}{\tilde{l}_{SST}}, \quad \tilde{l}_{SST} = \frac{\sqrt{k}}{w}$$
(19)

위 식의 길이척도 l_{ssr} 은 S-A 모델과 마찬가지로 식 (12) 와 같이 정의한다.

본 연구에서는 격자계와 필터의 길이척도를 나타내는 △ 의 영향을 알아볼 목적으로 S-A DDES 모델과 SST DDES 모 델 모두에서 길이척도 △를 제시된 두 가지 방법을 이용하여 계산을 수행하였으며, 각각의 경우를 Table 1에 나타내었다.

2.3 유동조건과 격자계

본 연구에서의 유동조건과 해석영역의 형상은 Driver & Seegmiller의 실험[7]을 바탕으로 구성하였다. Driver & Seegmiller의 실험결과는 구간별 유동의 속도분포와 벽면에서 의 압력계수분포 그리고 마찰계수분포를 제공하여 계산결과 와 비교 및 검증하기에 적절하며 이를 이용한 다른 연구결과 와도 비교 할 수 있다[11].

해석영역의 범위는 계단의 높이 h를 기준으로 입구의 높 이는 8h, 출구의 높이는 9h이며, 입구에서 출구까지의 거리 는 총 60h이다. 입구의 높이와 출구의 높이의 비를 나타내는 확장비(ER)는 1.125이며, 이를 Fig. 1에 나타내었다.

총 9개의 격자를 구성하여 각각에 대해 난류모델과 길이척 도에 대한 영향을 살펴보았다. 계단의 상류(upstream section) 와 하류(downstream section)로 구분하여 해석에 사용된 격자 크기를 Table 2에 정리하였다. 벽면근처에서의 난류경계층과 계단 끝단에서 발생하는 전단층을 정확히 모사하기 위해 격 자를 조밀하게 분포시켰으며, 모든 격자에서 벽면의 가장 작 은 격자의 크기는 $\Delta x^+, \Delta y^+ = 0.1$ 이다. 격자 간격의 영향 을 살펴보는 것이 목적이므로, 재부착점 근처에 격자를 특별 히 밀집시키지 않았다.

바닥벽면과 위 벽면의 경계조건은 등온 점성벽면을 사용하 였으며, 입구에서는 완전 발달된 난류가 유입되며 이때 입구 에서의 온도는 고정되어 있다. 출구의 경우 압력을 고정하였 으며, z 방향으로는 주기(periodic)경계조건을 사용하였다. 계 산 시 사용된 시간간격은 $0.02h/U_{\infty}$ 이다. 평균 유동장을 구 하기 위해 무차원시간 400에서 800까지의 유동자료를 시간평 균하였다.

실험에서 사용된 유입류와 일치시키기 위해 사용된 RANS 난류경계층의 속도 분포는 Table 3에 나와 있는 특성치를 충 족하도록 Wilcox[12]의 EDDYBL 프로그램을 이용하여 얻었다. 계산된 속도 분포를 subgrid scale에서 나타낸 Fig. 2를 보면, 벽법칙(law of the wall)을 잘 따르고 있어 난류경계층이 잘 모사되었음을 확인 할 수 있다. LES 해석에서 입구유동에 많 이 적용되는 난류섭동은 본 연구에서 고려하지 않고, 단지 평 균 난류특성과 속도분포만 유입류 조건으로 고정하였다.

Grid Density		Unstraam	Downstream	Core No	
x, y	Z	Opstream	Downstream	Case No.	
	Coarse	20x20x16	140x40x16	(1 - C)	
Coarse	Medium	20x20x32	140x40x32	(1-M)	
	Fine	20x20x64	140x40x64	(1 - F)	
Medium	Coarse	20x40x16	200x80x16	(2-C)	
	Medium	20x40x32	200x80x32	(2-M)	
	Fine	20x40x64	200x80x64	(2-F)	
Fine	Coarse	40x60x16	240x120x16	(3-C)	
	Medium	40x60x32	240x120x32	(3-M)	
	Fine	40x60x64	240x120x64	(3 - F)	

Table 2 Grid systems used

Table 3 Inflow boundary layer condition[7]

Step height	h_s	1.27cm
Reynolds number	Re_{h_s}	38,000
Freestream velocity	U_{∞}	44.2m/s
Boundary layer thickness	δ	1.9cm
Momentum thickness Reynolds number	Re_{θ}	5,000

Fig. 2 Boundary layer profile in subgrid scale (C=5.0 and k=0.41)

Fig. 3 Predicted skin-friction coefficient (S-A DDES, Max)

Fig. 4 Predicted skin-friction coefficient (SST DDES, Max)

Fig. 5 Predicted skin-friction coefficient (S-A DDES, Vol)

Fig. 6 Predicted skin-friction coefficient (SST DDES, Vol)

3. 해석 결과

3.1 길이척도에 따른 결과 비교

먼저 maximum 방법인 Δ = max(Δx, Δy, Δz)를 사용하 여 각 격자에 대한 계산결과의 벽면 마찰계수를 Fig. 3과 4에 나타내었다. 여기서 2-F 격자와 3-F 격자를 제외한 나머지 격 자에서 재부착지점을 잘 예측하지 못하고 있음을 알 수 있다. 이는 max(Δx, Δy, Δz)의 특성상 셀의 x, y, z 방향 길이 중 가장 길이가 긴 값을 사용하게 되며, 계단 하류의 대부분 의 영역에서 가장 긴 길이는 z 방향 길이가 된다. 그러므로 2-C 격자와 3-C 격자는 각각 동일한 길이척도로 계산되었음 을 알 수 있다. 반면 x-y 평면 격자간격이 큰 1-C/1-M/1-F 격 자의 경우 z 방향 영향을 논하기에 부족한 해상도로 계산되 었음을 알 수 있다. 횡방향의 격자가 많은 2-F 격자와 3-F 격

Fig. 7 Convergence of predicted reattachment length

자의 경우만 실험값과 근접한 결과를 보여주고 있다.

다음으로 volume 방법인 $\Delta = (\Delta x \Delta y \Delta z)^{1/3}$ 을 이용하여 각 격자에 대한 계산결과를 비교하여 Fig. 5와 Fig. 6에 나타 내었다. Fig. 5와 Fig. 6은 각각 S-A DDES를 이용한 경우와 SST DDES를 이용한 경우에 벽면 마찰계수를 실험결과와 비 교하여 나타낸 그림이다. S-A DDES의 경우 2 격자와 3 격자 의 결과들이 실험값과 유사하게 예측하고 있음을 볼 수 있다. 그러나 2-C 격자의 경우 재부착 위치는 실험결과와 유사하게 예측하고 있으나 재부착 이후의 마찰계수를 잘 예측하지 못 하고 있음을 알 수 있다. SST DDES의 경우 격자의 개수가 늘어날수록 실험값에 근접해지는 경향을 보이고 있음을 알 수 있다. 1-C 격자를 사용한 결과가 실험값과 가장 큰 차이를 보이고 있으며 2-F 격자와 3 격자가 실험값과 근사한 결과를 보여주고 있다.

벽면마찰계수 결과를 이용하여 S-A DDES 모델과 SST DDES 모델을 비교 해 보기 위해 각각의 격자와 길이척도에 따른 재부착지점을 Fig. 7과 Table 4에 나타내었다. 이를 살펴

Table 4 Predicted Reattachment length

Model	Grid	1-C	1-M	1-F	2-C	2-M	2-F	3-C	3-M	3-F
Volume	S-A	7.79	7.47	6.99	6.17	6.48	5.98	5.93	6.36	6.04
method	SST	8.40	7.42	6.61	7.35	6.19	5.88	6.60	5.80	5.94
Maximum	S-A	15.5	15.9	11.7	17.4	8.90	6.53	17.4	8.11	5.88
method	SST	8.57	9.13	8.95	9.02	10.1	6.47	9.05	9.44	5.89
Experim	ent	6.20								

보면 volume 방법의 SST DDES의 경우 주기방향의 격자 개수 에 따라 크게 차이 남을 볼 수 있다. 그러나 volume 방법의 S-A DDES의 경우 z 방향 격자의 개수와 관계없이 실험값과 근사한 재부착 위치를 예측하고 있다. 이는 각 난류모델에 적 용한 DDES 기법의 차이에 의해 생긴다고 볼 수 있다. S-A 모델의 경우 길이척도가 소산항에 나타나고 또한 생성항의 평균 변형율의 계산에도 나타나기 때문에 새로운 길이척도가 소산항과 생성항 모두에 적용된다고 볼 수 있다. 반대로 SST 모델의 경우 새로운 길이척도는 난류에너지 방정식의 소산항 에만 적용되는 차이가 있다. 그러나 주기방향으로 충분히 많 은 격자를 사용한 2-F와 3-F 격자의 경우 같은 길이 척도를 사용하면 DDES의 모델과 관계없이 서로 근접한 재부착길이 를 예측함을 볼 수 있다. volume 방법의 경우 2-F 격자와 3-F 격자 모두 실험값과 근접한 재부착길이를 예측하고 있지만, maximum 방법의 경우 "모든 방향"으로 충분히 조밀한 3-F 격 자만 실험값에 근접하게 예측한다. 즉 maximum 방법은 재부 착점의 예측에서 △ z 가 난류특성의 결정에 가장 중요한 변 수가 됨을 보여준다.

3.2 고유주파수와 난류생성항 비교

앞서 비교한 재부착길이 예측결과에서 실험값과 근접한 몇 가지의 경우를 선정하여 유동의 고유주파수를 비교해 보았다. 실험에서 얻은 고유주파수는 x/h=6.0, y/h=1.0 인 지점에서 측 정한 흐름방향 속도성분으로부터 계산되어지며, 이를 St_h = fh/U_∞로 표현한다. Table 5를 보면, maximum 방법의 경우 3-F 격자에서 실험값과 가까운 고유주파수를 나타내고 있으며, volume 방법을 사용할 경우 SST DDES는 3-M 격자부 터 실험값에 근접하는 주파수를 보이는 반면, S-A DDES는 재부착길이와 마찬가지로 2-C 격자에서도 실험값과 상당히 근사한 결과를 보여주고 있다.

Fig. 8에는 주어진 지점에서의 난류생성항(turbulent production term)을 비교하였다. Driver 등[7]은 실험에서 난류치인 u^2 , v^2 그리고 uv 등을 측정하여 다음의 식을 이용하여 난 류의 production을 계산하였다.

		$St_h = fh/U_{\infty}$		
Experiment		0.096		
Eaton & Johnston		0.07		
Neto et.al.		0.09		
Vol. Method	S-A, 2-C	0.095		
	S-A, 3-M	0.099		
	S-A, 3-F	0.097		
	SST, 3-M	0.107		
	SST, 3-F	0.095		
Max	S-A, 3-F	0.094		
Method	SST, 3-F	0.094		

Table 5 Frequency analysis results

Fig. 8 Comparison of turbulent production term

$$Production = -uv \frac{\partial U}{\partial y} - (v^2 - u^2) \frac{\partial U}{\partial x}$$
(20)

각각 x/h=4.0, 8.0 그리고 12.0인 지점에서의 난류 production term을 나타내었는데, 길이척도와 격자크기를 고려 해 볼 때, 3-F 격자에서 maximum 방법을 사용한 SST DDES의 결과가 실험값과 가장 근접하게 나타나고 있다. 그러나 2-C 격자로 volume 방법을 사용한 S-A DDES의 예측결과도 실험값과 근 사하다고 볼 수 있다. 이 경우 재순환 영역인 x/h=4.0인 지점 의 예측결과가 실험값과 가장 큰 차이를 보이지만, 재부착지 점 이후인 x/h=8.0과 x/h=12.0의 경우 실험값과 근사한 결과를 보여준다.

3.3 압력계수와 속도분포 비교

먼저 Fig. 9는 재부착점과 주과수 특성이 좋은 결과만을 추려서 해당 격자의 압력계수분포를 도시한 그림이다. 도시한 결과를 살펴보면 재순환영역 내에서 약간의 차이가 존재하지

Fig. 9 Predicted pressure coefficient

만, S-A DDES와 SST DDES 모두 실험값과 유사한 결과를 보 여주고 있다. 특히 S-A DDES의 경우 재순환 영역인 0 ≤ x/h ≤ 6의 구간에서 실험값과 상당히 유사한 압력계수 분포를 보여주고 있다.

Fig. 10에서는 각각 x/h = -4, 4, 6, 10, 그리고 20인 지점 에서의 x 방향 속도분포를 실험값과 비교하여 보여주고 있 다. 속도분포 또한 두 경우 모두 실험값과 유사한 결과를 보 여주고 있으며 S-A DDES를 이용한 계산결과가 SST DDES를 이용한 결과보다 재부착 이후의 속도분포를 정확하게 예측하 고 있음을 볼 수 있다.

4. 결 론

본 연구에서는 후향계단의 비정상 난류유동을 S-A 난류모 델과 SST 난류모델을 기반으로 한 DDES 기법을 적용하여 해 석하였다. 각 격자계와 길이척도에 대하여 수행한 해석 결과 를 Driver & Seegmiller의 실험결과와 비교하여 보았다. 재부 착지점을 가장 실험값과 유사하게 예측한 결과를 선택하여 압력계수분포와 속도분포를 비교하여 보았다.

일반적인 max 방법의 경우는 2-F와 3-F의 격자를 제외한 모든 격자계에 대하여 주기방향 격자가 부족함을 보여주었다. 길이척도와 DDES 기법과 관계없이 *x*, *y*, *z*방향의 모든 격자 를 충분히 많이 사용하게 되면, 큰 차이를 보이지 않는 일정 한 해를 얻을 수 있었다. 그러나 수렴된 결과를 얻을 수 있는 3-F 격자의 경우 약 2,000,000개의 격자를 사용한 반면, volume 방법을 이용하여 S-A DDES로 해석한 2-C 격자의 경 우, 3-F 격자의 1/7에 불과한 270,000개의 격자만으로도 실험 값과 근사한 결과를 얻을 수 있었다. 즉, Vol 방법을 길이척

Fig. 10 Predicted velocity profile at streamwise locations

도로 사용할 경우, S-A DDES가 SST DDES 보다 주기방향 격 자크기의 의존성이 적음을 알 수 있었다. 종합해 보면, DDES 해석에서 충분히 조밀한 격자계뿐만 아니라 길이척도의 선택 이 중요하며, 주기방향 격자크기의 지배성을 완화하는 효과를 가지는 기하평균 방법이 효율적임을 알 수 있었다.

후 기

본 연구는 국방과학연구소의 지원으로 수행된 연구(UD-100055CD)로 지원에 감사드립니다.

참고문헌

- 2009, Sainte-Rose, B., Bertier, N., Deck, S., Dupoirieux F., "A DES method applied to a Backward Facing Step reactive flow," *Computes rendus. Mecanique*, Vol.337, No.6/7, pp.340-351.
- [2] 2011, Smith, A. E., Gordeyev, S., Jumper, E., "Aero Optics of Subsonic Boundary Layers over Backward Steps," 42th AIAA Plasmadynamics and Lasers Conference

AIAA-2011-3277.

- [3] 1997, Spalart, P. R., Jou, W.-H., Strelets, M., and Allmaras, S. R., "Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES approach," *proceedings of first AFOSR international conference on DNS/LES*, Louisiana, Greyden Press.
- [4] 2006, Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. Kh, and Travin, A., "A New Version of Detached-Eddy Simulation, Resistant to ambiguous Grid Densities," *Theoretical Computational Fluid Dynamics*, Vol.20, pp.181-195.
- [5] 1992, Spalart, P. R. and Allmaras, S. R., "A One-Equation Turbulence Model for Aerodynamic Flows," *AIAA paper* 94-0643.
- [6] 2000, Travin, A., Shur, M., Strelets, M., Spalart, P. R., "Detached-Eddy Simulations Past a Circular Cylinder," *Flow Turbulence and Combustion*, Vol.63, pp.293-313.
- [7] 1985, Driver S. M., Seegmiller, H. L., "Features of a

Reattaching Turbulent Shear Layer in Divergent Channel Flow," *AIAA Journal*, Vol.23, No.2, pp.163-171.

- [8] 2006, Park, S. H., Lee, J. E., and Kwon, J. H., "Preconditioned HLLE Method for Flows at All Mach Numbers," *AIAA Journal*, Vol.44, No.11, pp.2645-2653.
- [9] 2003, Pandya, S. A., Venkateswaran, S., and Pulliam, T. H., "Implementation of Preconditioned Dual-Time Procedures in OVERFLOW," *AIAA Paper 2003-0072.*
- [10] 2009, Riou, J., Garnier, E., Deck, S., and Basdevant, C., "Improvement of Delayed-Detached Eddy Simulation Applied to Separated Flow Over Missile Fin," *AIAA Journal*, Vol.47, No.2, pp.345-360.
- [11] 2006, Song, C. S., and Park, S. O., "Assessment of URANS and DES Simulations for Two-Dimensional Backward Facing Step Flow," *Journal of KSCFE*, Vol.11, No.2, pp.25-30.
- [12] 2000, Wilcox, D., "Turbulence Modeling for CFD," 2nd ed., DCW Industries, Inc., La Canada, CA.