• Title/Summary/Keyword: Turbulent Transition

Search Result 187, Processing Time 0.027 seconds

CFD Simulation on Predicting POW Performance Adopting Laminar-Turbulent Transient Model (층류-난류 천이 모델을 적용한 프로펠러 단독 성능 해석에 관한 CFD 시뮬레이션)

  • Kim, Dong-Hyun;Jeon, Gyu-Mok;Park, Jong-Chun;Shin, Myung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • In the present study, the model-scale Propeller Open Water (POW) tests for the propeller of 176K bulk carrier and 8600TEU container ship were conducted through Computational Fluid Dynamics (CFD) simulation. In order to solve the incompressible viscous flow field, the Reynolds-averaged Navier-Stokes (RaNS) equations were employed as the governing equations. The γ-Reθ(gamma-Re-theta) transition model combined with the SST k-ωturbulence model was introduced to describe the laminar-turbulence transition considering the low Reynolds number of model-scale. Firstly, the flow simulation developing over a flat plate was performed to verify the transition modeling, in which the wall shear stresses were compared with experiments and other numerical results. Then, to investigate the effect of the model, the CFD simulation for the POW test was performed and the simulated propeller performance was validated through comparison with the experiment conducted at Korea Research Institute of Ships & Ocean Engineering (KRISO).

Transition Phenomenon from a Flat Flame to Turbulent Flame Motions by External Laser (외부 레이저에 의한 평면화염에서 난류화염거동까지의 천이현상)

  • Park, June Sung;Choi, Byung Chul;Fujita, Osamu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1209-1215
    • /
    • 2012
  • Experiments with premixed flames in a tube have been conducted to investigate the transition phenomenon from a laminar flat flame to turbulent motions. To induce this phenomenon, a flat flame is formed in a tube. Then, the local velocity at the center of the flat flame surface is increased using $CO_2$ laser irradiation. The deformed flame front propagates with an increase in the total flame surface and oscillating instability. Eventually, the flame front accelerates explosively, and it shows turbulent flame motions with a strong noise. The dynamic behaviors of the flame front prior to the turbulent motions are analyzed in this study to elucidate this process. The physical model of the process is presented according to observations.

Transition of Turbulent Boundary Layer with a Step Change from Smooth to Rough Surface (표면 형상 변화에 따른 난류경계층 유동장 분석)

  • Lee, Jae Hwa
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.3
    • /
    • pp.15-20
    • /
    • 2014
  • Direct numerical simulation (DNS) dataset of a turbulent boundary layer (TBL) with a step change from smooth to rough surface is analyzed to examine spatially developing flow characteristics. The roughness elements are periodically arranged two-dimensional (2-D) spanwise rods with a streamwise pitch of ${\lambda}=8k$ ($=12{\theta}_{in}$), and the roughness height is $k=15{\theta}_{in}$, where ${\theta}_{in}$ is the inlet momentum thickness. The step change is introduced $80{\theta}_{in}$ downstream from the inlet. For the first time, full images from the DNS data with the step change from the smooth to rough walls is present to get some idea of the geometry of turbulent coherent structures over rough wall, especially focusing on their existence and partial dynamics over the rough wall. The results show predominance of hairpin vortices over the rough wall and their spanwise scale growth mechanism by merging.

A New Wall-Distance Free One-Equation Turbulence Model

  • Nakanishi Tameo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.107-109
    • /
    • 2003
  • We propose a wall distance free one-equation turbulence model. The model is organized in an extremely simple form. Only a few model constants were introduced into the model. The model is numerically tough and easy-of-use. The model also demonstrated the ability to simulate the laminar to turbulent flow transition. The model has been applied to the channel flow, the plane jet, the backward facing step flow, the flat plate boundary layer, as well as the flow around the 2D airfoil at large angles of attack, which obtained satisfactory results.

  • PDF

A COMPUTATIONAL STUDY ON THE CHARACTERISTICS OF ASYMMETRIC VORTEX OF TANGENT-OGIVE-CYLINDER FLIGHT VEHICLE AT HIGH ANGLES OF ATTACK (Tangent-Ogive-Cylinder 비행체의 고앙각에서의 비대칭 와류 특성 연구)

  • Lim, S.;Kim, S.D.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.3-7
    • /
    • 2007
  • The characteristics of asymmetric vortex and side force of tangent-ogive-cylinder flight vehicle at high angles of attack have been performed by using upwind Navier-Stokes method with the ${\kappa}-{\omega}$ turbulence model. And Asymmetric transition positions are considered for generation of asymmetric vortex.

  • PDF

EINOx scaling of H2/CO Syngas Non-premixed Turbulent Jet Flame (H2/CO 합성가스의 난류 제트 확산화염에서 EINOx Scaling)

  • Hwang, Jeongjae;Sohn, Kitae;Kim, Taesung;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.55-58
    • /
    • 2012
  • EINOx scaling for $H_2/CO$ non-premixed turbulent jet flame was conducted. NOx concentration and flame length were measured simultaneously with varying flow conditions. Flame length increases with Reynolds number which means the flames in buoyancy-momentum transition region. We assessed the previous Chen & Driscoll's scaling with present results. However, the scaling cannot satisfy the present results. We proposed new scaling which is addressed the simplified flame residence time. The new scaling satisfies the results of $H_2/CO$ syngas flame as well as pure hydrogen flames.

  • PDF

3D Radiation-Hydrodynimics for surface turbulence of Low-mass Stars

  • Bach, Kiehunn;Kim, Yong-Cheol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.84.3-84.3
    • /
    • 2019
  • We investigate 3D radiation-hydrodynamics (RHD) for surface convection of the solar-type low-mass stars (M = 0.8, 0.9, and 1.0 Msun). The outer convection zone (CZ) of low-mass stars is an extremely turbulent region composed of partly ionized compressible gases at high temperature. Particularly, the super-adiabatic layer (SAL), the top of the CZ is the transition region where the transport of energy changes drastically from convection to radiation. In order to accurately describe physical processes, a realistic treatment of radiation should be considered as well as convection. As a starting model, the initial stratification in the outer envelope calculated using the solar calibrations in the context of the standard stellar theory. When the numerical fluid becomes thermally relaxed, the thermodynamic structure of the steady-state turbulent flow was explicitly collected. In this presentation, we compared thermodynamic properties of turbulent convection of the solar-type low-mass stars.

  • PDF

Experimental Study on Flow Noise Generated by Axi-symmetric Boundary Layer (II) - Forced Transition on an Axi-symmetric Nose and Radiated Sound - (축대칭 물체의 경계층 유동소음에 대한 실험적 연구(II) - 전두부 천이제어 및 방사소음 -)

  • Lee, Seung-Bae;Kim, Hooi-Joong;Kwon, O-Sup;Lee, Sang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1326-1334
    • /
    • 2000
  • The oscillatory excitation with a Strouhal number of 2.65 ncar the stagnation zone of hemispherical nose model was employed to control the laminar separation bubble and the transition to turbulence. The effects of oscillatory excitation upon the separation bubble and the transition were addressed in terms of kurtosis/skewness and time-frequency analyses. The measured noise spectrum of radiated sound from the turbulent boundary layer on the axi-symmetric infinite cylinder is compared with that by Sevik's wave-number white approximations. The noise sources in TBL on axi-symmetric cylinder and the caling of their far-field sound are also discussed.

Experimental research on flow regime and transitional criterion of slug to churn-turbulent and churn-turbulent to annular flow in rectangular channels

  • Qingche He;Liang-ming Pan;Luteng Zhang;Wangtao Xu;Meiyue Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3973-3982
    • /
    • 2023
  • As for two-phase flow in rectangular channels, the flow regimes especially like churn-turbulent and annular flow are significant for the physical problem like Countercurrent Flow Limitation (CCFL). In this study, the rectangular channels with cross-sections of 4 × 66 mm, 6 × 66 mm, 8 × 66 mm are adopted to investigate the flow regimes of air-water vertical upward two phase flow under adiabatic condition. The gas and liquid superficial velocities are 0 ≤ jg ≤ 20m/s and 0.25 ≤ jf ≤ 3m/s respectively which covering bubbly to annular flow. The flow regimes are identified by random forest algorithm and the flow regime maps are obtained. As the results, the transitional void fraction from slug to churn turbulent flow fluctuate from 0.47 to 0.58 which is significantly affected by the dimensional size of channel and flow rate. Besides, the void fraction at transitional points from churn-turbulent (slug) to annular flow are 0.66-0.67, which are independent with the gap size. Furthermore, a new criteria of slug to churn-turbulent flow is established in this study. In addition, by introducing the interfacial force model, the criteria of churn-turbulent (slug) flow to annular flow is verified.

An Experimental Study on the Flow-rate and Velocity Profile of Air Flow in the Smooth Pipe (매끈한 관내 공기유동에서 유량과 속도분포에 관한 실험적 연구)

  • Park, Sang-Eun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.54-60
    • /
    • 2002
  • Experimental study was conducted to obtain the air velocity profiles in turbulent pipe flow. The acrylic smooth pipe (${\phi}=80mm$) was used for the test section of the flow loop. It was known that the velocity profiles of turbulent flow were different with Reynolds numbers and the viscous sublayer was usually quite thin. The following conclusions were drawn from the experimental investigations. Maximum velocity of the pipe center and flow-rate are useful for the duct design on the spot. The velocity profiles of high Reynolds number was flatter than those of low Reynolds number. It was known that the exponent, n, for power-law velocity profiles was $6{\sim}9$ depending on Reynolds number ranging from $10^4$ to $10^5$ in the turbulent flow, However, in this experiment study, it was $9{\sim}14$ depending on Reynolds number ranging from 17,000 to 123,727 in the turbulent flow, and $1.7{\sim}3.5$ depending on Reynolds number ranging from 2,442 to 4,564 in the transition region.