• Title/Summary/Keyword: Turbine Blade Temperature

Search Result 145, Processing Time 0.023 seconds

Shape Optimization and Reliability Analysis of the Dovetail of the Disk of a Gas Turbine Engine (가스터빈엔진 디스크의 도브테일 형상 최적화와 신뢰도 해석)

  • Huh, Jae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.379-384
    • /
    • 2014
  • The most critical rotating parts of a gas turbine engine are turbine blades and disc, given that they must operate under severe conditions such as high turbine inlet temperature, high speeds, and high compression ratios. Owing to theses operating conditions and high rotational speed energy, some failures caused by turbine disks and blades are categorized into catastrophic and critical, respectively. To maximize the margin of structural integrity, we aim to optimize the vulnerable area of disc-blade interface region. Then, to check the robustness of the obtained optimized solution, we evaluated structural reliability under uncertainties such as dimensional tolerance and fatigue life variant. The results highlighted the necessity for and limitations of optimization which is one of deterministic methods, and pointed out the requirement for introducing reliability-based design optimization which is one of stochastic methods. Thermal-structural coupled-filed analysis and contact analysis are performed for them.

Application of the Infusion Method to the Repair of Damage in Wind Turbine Blades (진공성형 공법을 이용한 풍력발전기 블레이드의 수리)

  • Lee, Kwangju;Jang, Han Seul;Seon, Seokwoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4756-4762
    • /
    • 2014
  • Damaged wind turbine blades are repaired conventionally using a hand lay-up method with epoxy, where the bonding strength is not high. Epoxy has poor curing characteristics at low temperatures. The infusion method with polyester was proposed. Infusion method is believed to distribute resin uniformly. Polyester is used because it hardens better than epoxy at low temperatures. At room temperature, the proposed method increased the bonding strength by 77.7% compared to the conventional method. Using the proposed method at 15 and $5^{\circ}C$, the bonding strength increased compared to the conventional method. This paper proposes a new method for repairing wind turbine blades, even at temperatures where the conventional method cannot be used because epoxy resin does not harden. The bonding strength of the proposed method at low temperatures is higher than that of the conventional method at room temperature.

Unsteady Wet Steam Flow Measurements in a Low-Pressure Test Steam Turbine

  • Duan, Chongfei;Ishibashi, Koji;Senoo, Shigeki;Bosdas, Ilias;Mansour, Michel;Kalfas, Anestis I.;Abhari, Reza S.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • An experimental study is conducted for unsteady wet steam flow in a four-stage low-pressure test steam turbine. The measurements are carried out at outlets of the last two stages by using a newly developed fast response aerodynamic probe. This FRAP-HTH probe (Fast Response Aerodynamic Probe - High Temperature Heated) has a miniature high-power cartridge heater with an active control system to heat the probe tip, allowing it to be applied to wet steam measurements. The phase-locked average results obtained with a sampling frequency of 200 kHz clarify the flow characteristics, such as the blade wakes and secondary vortexes, downstream from the individual rotational blades in the wet steam environment.

Bulk Flow Pulsations and Film Cooling from Two Rows of Staggered Holes : Effect of Blowing Ratios (주유동의 맥동과 엇갈린 2열 분사홀로부터의 막냉각 : 분사비의 영향)

  • Sohn, Dong Kee;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1195-1207
    • /
    • 1998
  • Periodic pulsations in the static pressure near turbine surfaces as blade rows move relative to each other is one of the important sources of turbine unsteadiness. The present experiment aims to investigate the effect of the static pressure pulsations on the interaction of film coolant flows from two rows of staggered holes with mainstream and its effect on film cooling heat transfer. Potential flow pulsations are generated by the rotating shutter mechanism installed downstream of the test section, The free-stream Strouhal number based on the boundary layer thickness is in the range of 0.033 - 0.33, and the amplitude of about 10-20%. Measured are time-averaged and phase-averaged velocity variations, pressure variations and temperature distributions of the flow field. Experimental conditions are identified by boundary layer measurements. Injectant behavior is characterized by the measurements of unsteady pressure in the plenum chamber and free-stream static pressure. The film cooling effectiveness is evaluated from the insulated wall temperature measurement. It has been found that bulk flow pulsation provides very large diffusion of the injectants and the effectiveness is significantly reduced by the flow pulsations.

Study on Structural Characteristic for Durability Insurance of Turbopump Turbine (터보펌프 터빈의 내구성 확보를 위한 구조적 특성 연구)

  • Lee, Mu-Hyoung;Jang, Byung-Wook;Kwon, Jeong-Sik;Kim, Jin-Han;Jeong, Eun-Hwan;Jeon, Seong-Min;Lee, Soo-Yong;Park, Jung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.382-386
    • /
    • 2009
  • The life of a component decreases when it was exposed at the extreme condition. A turbine blade of a turbopump used for a liquid rocket engine is operated under the environment of high temperature and pressure, and experienced high centrifugal force. Thus the durability of the turbopump operated under the these conditions become lower than expected because of the severe fatigue and creep influence. The damage of the turbine being considered the fatigue and the creep influence is estimated to ensure the durability of turbopump turbine. ABAQUS/CAE and MSC.Fatigue are used for the fatigue analysis, and Larson-Miller parameter and robinson's rule are used for the creep analysis. In this paper, comparison and analysis of the fatigue and the creep influence were performed to ensure the life expectancy of turbopump turbine.

  • PDF

Effect of Cr/Ti/Al Elements on High Temperature Oxidation Behavior of a Ni-Based Superalloy with Thermal Exposure (고온 노출 니켈기 초내열합금 터빈 블레이드의 Cr/Ti/Al 성분이 고온 산화에 미치는 영향)

  • Byung Hak Choe;Sung Hee Han;Dae Hyun Kim;Jong Kee Ahn;Jae Hyun Lee;Kwang Soo Choi
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • High-temperature oxidation of a Ni-based superalloy was analyzed with samples taken from gas turbine blades, where the samples were heat-treated and thermally exposed. The effect of Cr/Ti/Al elements in the alloy on high temperature oxidation was investigated using an optical microscope, SEM/EDS, and TEM. A high-Cr/high-Ti oxide layer was formed on the blade surface under the heat-treated state considered to be the initial stage of high-temperature oxidation. In addition, a PFZ (γ' precipitate free zone) accompanied by Cr carbide of Cr23C6 and high Cr-Co phase as a kind of TCP precipitation was formed under the surface layer. Pits of several ㎛ depth containing high-Al content oxide was observed at the boundary between the oxide layer and PFZ. However, high temperature oxidation formed on the thermally exposed blade surface consisted of the following steps: ① Ti-oxide formation in the center of the oxide layer, ② Cr-oxide formation surrounding the inner oxide layer, and ③ Al-oxide formation in the pits directly under the Cr oxide layer. It is estimated that the Cr content of Ni-based superalloys improves the oxidation resistance of the alloy by forming dense oxide layer, but produced the σ or µ phase of TCP precipitation with the high-Cr component resulting in material brittleness.

Performance Analysis by CFD and Aerodynamic Design of 100kW Class Radial Turbine Using Waste Heat from Ship (선박 폐열을 이용한 100kW급 구심터빈 공력설계 및 CFD에 의한 성능해석)

  • Mo, Jang-Oh;Kim, You-Taek;Kim, Mann-Eung;Oh, Cheol;Kim, Jeong-Hwan;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • The purpose of this study is to secure the design data for the optimization of the radial turbine and heat cycle system, by using the CFD analysis technique and the design of 100kW class radial turbine applicable to waste heat recovery generation system for ship. Radial turbine was comprised of scroll casing, vane nozzle with 18 blades and rotor with 13 blades, and analysis grid was used to about 2.3 million. Mass flow rate and rotational speed was 0.5kg/s, 75,0000rpm, respectively. Eight kinds of inlet pressure was set between 195 and 620kPa. As the flow accelerated through the nozzle passage to the throat, the pressure level at the pressure and suction sides becomed similar to about Mach number of 0.35. When the inlet temperature and pressure was $250^{\circ}C$, 352kPa respectively, the isentropic efficiency and mechanical power showed the analysis results of 74% and 108kW.

Manufacturing of Ti-48Al-2Cr-2Nb Alloy Turbocharger Turbine Wheel by Vacuum Centrifugal Casting (진공 원심 주조를 이용한 Ti-48Al-2Cr-2Nb 합금 터보차저 터빈휠 제작)

  • Pak, Sung Joon;Ju, Heongkyu
    • Journal of Korea Foundry Society
    • /
    • v.41 no.2
    • /
    • pp.127-131
    • /
    • 2021
  • Based on its good compatibility with high-temperature environments, the Ti-48Al-2Cr-2Nb alloy is used for high-temperature materials of industrial equipment. In this study, a Ti-48Al-2Cr-2Nb alloy turbocharger turbine wheel was fabricated by a vacuum centrifugal casting method. The conditions that prevent misrun defects of the turbocharger turbine wheel blade from centrifugal casting using alumina molds were investigated. The microstructure of the alloy prepared by vacuum centrifugal casting was studied by means of optical microscopy (OM), with a micro-Vickers hardness analyzer (HV), by X-ray diffraction (XRD) and by SEM-EDS. The HV and SEM-EDS examinations of the as-cast Ti-48Al-2Cr-2Nb alloy showed that the thickness of the oxide layer (α-case) was typically less than 50 ㎛. At a high preheating temperature of 1,100℃, a moderate RPM of 260, and with an alumina mold with a large gate size, there were almost no misrun defects. Therefore, it was confirmed that a Ti-48Al-2Cr-2Nb alloy turbocharger turbine wheel with fewer misrun defects could be achieved through a high preheating temperature, a moderate RPM, a large gate size and an alumina mold to suppress the formation of alpha-case components.

Evaluation on the Delamination Life of Isothermally Aged Plasma Sprayed Thermal Barrier Coating (플라즈마 용사 열차폐 코팅의 박리수명 평가에 관한 연구)

  • Kim, Dae-Jin;Shin, In-Hwan;Koo, Jae-Mean;Seok, Chang-Sung;Kim, Moon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.162-168
    • /
    • 2009
  • In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. The aging conditions that delamination occurs were determined by the extensive microscopic analyses and bond tests for each aging condition. The delamination map was drawn from the time-temperature matrix form which summarize the delamination conditions. Finally, a method to draw the delamination life diagram of a thermal barrier coating system by using the delamination map was suggested.

Evaluation on the Delamination Life of Isothermally Aged Plasma Sprayed Thermal Barrier Coating (플라즈마 용사 열차폐 코팅의 박리수명 평가에 관한 연구)

  • Kim, Dae-Jin;Shin, In-Hwan;Koo, Jae-Mean;Seok, Chang-Sung;Kim, Mun-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.216-221
    • /
    • 2008
  • In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. The aging conditions that determination occurs were determined by the extensive microscopic analyses and bond tests for each aging condition. The delamination map was drawn from the time-temperature matrix form which summarize the delamination conditions. Finally, a method to draw the delamination life diagram of a thermal barrier coating system by using the delamination map was suggested

  • PDF