• 제목/요약/키워드: Tunnel lining cavity

검색결과 20건 처리시간 0.025초

국내 재래식 터널의 변상현황과 배면공동 보강 사례연구 (A Case Study on Deformation Conditions and Reinforcement Method of Cavity behind the Lining of Domestic Old Tunnel)

  • 김영묵;임광수;마상준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1343-1350
    • /
    • 2005
  • In this study, the whole deformation conditions of domestic old tunnels and reinforcement methods for deformation tunnels were investigated and analysed, and the present conditions, occurrence cause and reinforcement methods of cavity behind the tunnel lining were investigated and analysed comprehensively. The deformation causes of domestic old tunnels could be classified in three kinds : change of earth pressure operating tunnel ground, material problem of concrete lining, mistake of design and construction. As a result of analysis, the tunnel deformation was occurred by not specific cause but various cause As a result of investigation for 455 domestic tunnel data, more than 70% of the tunnel deformation was related to leakage and the other deformation cause also accompanied leakage mostly. An applied reinforcement method was related to leakage and flood prevention measures, but application of reinforcement method for boundary area between tunnel and ground and tunnel periphery which influence on the tunnel stability was still defective. The cavity of domestic old tunnel occupied about 16% of the total tunnel length and about 68% of cavity was located in the crown of tunnel, and besides, the occurrence cause of cavity was analysed to design, construction and management cause. The filling method for cavity using filling material was comprehensively appling to cavity behind tunnel lining.

  • PDF

GPR 및 단일채널 탄성파탐사에 의한 터널라이닝 배면공동 조사 (Detection of the Cavity Behind the Tunnel Lining by Single Channel Seismic and GPR Method)

  • 신성렬;조철현;신창수;양승진;장원일
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권4호
    • /
    • pp.148-158
    • /
    • 1998
  • Determining the thickness if concrete lining and detecting of the cavity where is located behind tunnel lining plays an important role in the safety diagnosis of tunnel structure and the quality control. In this study, we made use of GPR and seismic method in order to find the cavity or flaw. Although GPR is very useful method in the concrete lining without rebar, it is difficult to detect the cavity in the reinforced concrete lining. We applied mini-seismic method to the reinforced concrete lining. The obtained seismic data was processed by means of seismic section in time domain and image section of power spectrum in frequency domain using Impact-Echo method as well. The proposed method can accurately show the location and depth of the cavity in the reinforced concrete lining.

  • PDF

터널 라이닝 공동에 대한 GPR 신호 특성 분석을 위한 수치해석 연구 (A Study on Numerical Analysis for GPR Signal Characterization of Tunnel Lining Cavities)

  • 고규현;이성진
    • 한국지반공학회논문집
    • /
    • 제37권10호
    • /
    • pp.65-76
    • /
    • 2021
  • 노후화된 터널 구조물의 라이닝 내부 및 배면에 존재하는 공동은 다양한 원인에 의해 발생되며 대부분의 경우 육안검사가 불가능한 곳에 존재하기 때문에 이에 대한 점검이 쉽지 않다. 최근에는 지반탐사레이더와 같은 비파괴시험 등을 이용하여 터널 라이닝과 배면에 대한 상태를 평가하는 시도가 이루어지고 있으며, 이와 관련된 다양한 모형시험 및 해석연구가 수행되고 있다. 본 연구에서는 gprMax 소프트웨어를 이용하여 터널 라이닝 모형 시험체 조건에 대한 GPR 신호특성을 시각화하여 분석하였고, 이를 모형체 시험 결과와 비교하였다. 모형체 시험에 적용된 GPR 해석모델은 터널 라이닝 및 내부 공동 등 매질 변화에 대한 전자기파 신호변화를 합리적으로 모사하였다. 검증된 수치해석모델을 이용하여 터널 라이닝의 두께, 내부의 공동 존재와 규모, 방수막의 영향, 주파수대역의 영향 등을 평가하기 위한 GPR 분석 기법 개발에 필요한 데이터를 확보하였다.

지하레이다(GPR)를 이용한 터널 라이닝 비파괴시험에 관한 연구 (Non-Destructive Test for Tunnel Lining Using Ground Penetrating Radar)

  • 김영근;이용호;정한중;신상범;조철현
    • 터널과지하공간
    • /
    • 제7권4호
    • /
    • pp.274-283
    • /
    • 1997
  • It is necessary to estimate the soundness of tunnel using non-destructive tests(NDT) for effective repairs and maintenances. But, the state of tunnel lining could not be investigated using previous non-destructive techniques, due to the various types of support and accessibility only from one side in tunnel lining. Recently, the various non-destructive techniques such as ground penetrating radar(GPR) have been researched and developed for inspection of tunnel lining. In this study, the usefulness and applicability of GPR test in tunnel lining inspection has been investigated through model tests and tunnel site application. This paper described the tunnel lining inspection for lining thickness, cavity and support using GPR test. From the results of tests, we have concluded that GPR test are very useful and effective techniques to look into the interior of lining and measure the lining thickness.

  • PDF

터널 건전도 평가를 위한 라이닝 모델실험 (Model Test of Lining for Estimation of Tunnel Soundness)

  • 김영근
    • 자연, 터널 그리고 지하공간
    • /
    • 제1권2호
    • /
    • pp.59-71
    • /
    • 1999
  • Recently, many deformations in tunnel such as crack and leakage were occulted. Specially, the defects of tunnel lining have been a serious problem in safety and stability many repair works for maintenance in tunnel have been carried out. Therefore, it is necessary to estimate the structural cracking for countermeasure in deformed tunnel and to investigate on the characteristics of lining system and the soundness of tunnel. In this study model tests for tunnel lining were carried out using test apparatus and centrifuge, In the direct loading test, the prototype was Kyungbu high-speed railway tunnel and the scale is 1/10, and lining models were made of concrete. Test conditions included load conditions such as direction, shape and type, lining conditions such as single and double lining, thickness, and reinforcement. In centrifuge model test, the prototype was Seoul subway tunnel and the scale is 1/100, and lining models were made of aluminum and hydrostone. Test conditions included tunnel defects such as thickness shortage. behind cavity and longitudinal cracks, reinforcement methods such as epoxy, grouting and carbon sheet. From these model tests , the characteristics of deformation and failure for tunnel lining were estimated, and the structural behaviors of deformed lining and the effects of repair and reinforcement for tunnel lining were researched.

  • PDF

고유동 충전재의 개발과 노후 터널의 배면공동 뒤채움에 관한 연구 (A Study on Development of the Controlled Low-Strength and High-Flowable Filling Material and Application of the Backfilling in Cavities behind the Old Tunnel Lining)

  • 마상준;서경원;배규진;안상철;임경하
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권3호
    • /
    • pp.177-184
    • /
    • 2002
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the cavities where exist behind the tunnel lining, through the tunnel safety inspections. These cavities were analysed to affect a stability of a running-tunnel seriously. This study is on the development of the controlled low-strength and flowable filling material which is able to apply to the cavity behind the tunnel lining. The major materials of backfilling developed are a crushed sand and a stone-dust which exists as a cake-state and is a by-product obtained in the producting process of aggregate. It is conformed with the design standard to the physical characteristics of backfilling. The backfilling material developed is designed to reduce the fair amount of cement. According to the designed compound ratio, it is carried out the laboratory tests such as a compressive strength and a chemical analyses and is applied to dilapidated old tunnel for an application assessment.

Fracture behaviors of tunnel lining caused by multi-factors: A case study

  • Zhao, Yiding;Zhang, Yongxing;Yang, Junsheng
    • Advances in concrete construction
    • /
    • 제8권4호
    • /
    • pp.269-276
    • /
    • 2019
  • The cracking and spalling caused by fracture of concrete lining have adverse impacts on serviceability and durability of the tunnel, and the subsequent maintenance work for damaged structure needs to be specific to the damaging causes. In this paper, a particular case study of an operational tunnel structure is presented for the serious cracking and spalling behaviours of concrete lining, focusing on the multi-factors inducing lining failure. An integrated field investigation is implemented to characterize the spatial distribution of damages and detailed site situations. According to results of nondestructive inspection, insufficient lining thickness and cavity behind lining are the coupled-inducement of lining failure bahaviors. To further understanding of the lining structure performance influenced by these multiple construction deficiencies, a reliable numerical simulation based on extended finite element method (XFEM) is performed by using the finite element software. The numerical model with 112 m longitudinal calculation, 100 m vertical calculation and 43 m vertical depth, and the concrete lining with 1450 solid elements are set enrichment shape function for the aim of simulating cracking behavior. The numerical simulation responses are essentially in accordance with the actual lining damaging forms, especially including a complete evolutionary process of lining spalling. This work demonstrates that the serious lining damaging behaviors are directly caused by a combination of insufficient thickness lining and cavity around the surrounding rocks. Ultimately, specific maintenance work is design based on the construction deficiencies, and that is confirmed as an efficient, time-saving and safe maintenance method in the operational railway tunnel.

Flowability and Strength Properties of High Flowing Self-Compacting Concrete Using for Tunnel Lining

  • Choi, Yun-Wang;Choi, Wook;Kim, Byoung-Kwon;Jung, Jea-Gwone
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.145-152
    • /
    • 2008
  • So far, there has been no study of the concrete to strengthen in the lining of the tunnels, except for the study of the stability of subgrade and the tunnel construction technologies. In the existing concrete work for tunnel lining, lots of problems happen due to the partial compaction and the material segregation after casting concrete. Accordingly, the aim of this study is to improve economic efficiency and secure durability through the improvement of the construction performance and quality of the concrete for the tunnel lining among the civil structures. Therefore, the compactability and strength properties of the High Flowing Self-Compacting Lining Concrete (HSLC) are evaluated to develop the mixing proportion for design construction technology of HSLC that can overcome the inner cavity due to the reduced flowability and unfilled packing, which has been reported as the problem in the existing lining concrete. The result of the evaluation shows that the ternary mix meets the regulations better than the binary mix. Consequently, it has been judged applicable to the cement for tunnel lining.

터널 콘크리트 라이닝 배면공동 뒷채움 전후의 GPR 반응 (Comparison of the GPR response of the cavity behind the tunnel lining before and after the backfill grouting)

  • 문윤섭;하희상;고광범
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2008년도 공동학술대회
    • /
    • pp.191-194
    • /
    • 2008
  • 터널 시공당시 발생하는 여굴이나 라이닝과 원지반 사이에 발생하는 배면공동은 터널의 안정성에 심각한 문제를 야기할 가능성이 있으므로 모르타르 등으로 반드시 뒷채움 시공을 하여야 한다. 이러한 뒷채움 시공이 필요한 공동의 위치, 규모의 확인 및 뒷채움 시공의 결과를 효과적으로 확인하는 비파괴 방법으로 GPR탐사가 보편적으로 이용되어진다. 본 논문에서는 서울의 ○○ 터널의 천단부에 대하여 뒷채움 시공전 450MHz 주파수 대역의 안테나를 이용하여 연속적인 GPR탐사를 수행하였고, 그 결과 전체 터널구간 중 크고 작은 8개구간의 배면 공동이 존재하고 있음을 확인하였다. 뒷채움 시공 이후에도 동일한 측선에서 GPR탐사를 수행한 결과 시공전에 발견된 배면공동이 모두 효과적으로 메워진 것을 확인할 수 있었으며, 기타 철근이 배근되어진 구간역시 밀착도가 더욱 향상된 것을 확인할 수 있었다.

  • PDF

Quantitative assessment on the reinforcing behavior of the CFRP-PCM method on tunnel linings

  • Han, Wei;Jiang, Yujing;Zhang, Xuepeng;Koga, Dairiku;Gao, Yuan
    • Geomechanics and Engineering
    • /
    • 제25권2호
    • /
    • pp.123-134
    • /
    • 2021
  • In this paper, the carbon fiber reinforced plastic (CFRP) grids embedded in polymer cement mortar (PCM) shotcrete (CFRP-PCM method) was conducted to repair the degraded tunnel linings with a cavity. Subsequently, the reinforcing effect of the CFRP-PCM method under different degrees of lining deterioration was quantitatively evaluated. Finally, the limit state design method of the M-N interaction curve was conducted to determine whether the structure reinforced by the CFRP-PCM method is in a safe state. The main results indicated that when the cavity is at the shoulder, the lining damage rate is more serious. In addition, the remarkably reinforcing effect on the degraded tunnel linings could be achieved by applying a higher grade of CFRP grids, whereas the optimization effect is no longer obvious when the grade of CFRP grids is too high (CR8); Furthermore, it is found that the M-N numerical values of the ten reinforcing designs of the CFRP-PCM method are distributed outside the corresponding M-N theoretical interaction curves, and these designs should be avoided in the corresponding reinforcing engineering.