• Title/Summary/Keyword: Tunnel light

Search Result 146, Processing Time 0.028 seconds

Characterization of Groundwater Colloids From the Granitic KURT Site and Their Roles in Radionuclide Migration

  • Baik, Min-Hoon;Park, Tae-Jin;Cho, Hye-Ryun;Jung, Euo Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.279-296
    • /
    • 2022
  • The fundamental characteristics of groundwater colloids, such as composition, concentration, size, and stability, were analyzed using granitic groundwater samples taken from the KAERI Underground Research Tunnel (KURT) site by such analytical methods as inductively coupled plasma-mass spectrometry, field emission-transmission electron microscopy, a liquid chromatography-organic carbon detector, and dynamic light scattering technique. The results show that the KURT groundwater colloids are mainly composed of clay minerals, calcite, metal (Fe) oxide, and organic matter. The size and concentration of the groundwater colloids were 10-250 nm and 33-64 ㎍·L-1, respectively. These values are similar to those from other studies performed in granitic groundwater. The groundwater colloids were found to be moderately stable under the groundwater conditions of the KURT site. Consequently, the groundwater colloids in the fractured granite system of the KURT site can form stable radiocolloids and increase the mobility of radionuclides if they associate with radionuclides released from a radioactive waste repository. The results provide basic data for evaluating the effects of groundwater colloids on radionuclide migration in fractured granite rock, which is necessary for the safety assessment of a high-level radioactive waste repository.

A novel aerodynamic vibration and fuzzy numerical analysis

  • Timothy Chen;Yahui Meng;Ruei-Yuan Wang;ZY Chen
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.161-170
    • /
    • 2024
  • In recent years, there have been an increasing number of experimental studies showing the need to include robustness criteria in the design process to develop complex active control designs for practical implementation. The paper investigates the crosswind aerodynamic parameters after the blocking phase of a two-dimensional square cross-section structure by measuring the response in wind tunnel tests under light wind flow conditions. To improve the accuracy of the results, the interpolation of the experimental curves in the time domain and the analytical responses were numerically optimized to finalize the results. Due to this combined effect, the three aerodynamic parameters decrease with increasing wind speed and asymptotically affect the upper branch constants. This means that the aerodynamic parameters along the density distribution are minimal. Taylor series are utilized to describe the fuzzy nonlinear plant and derive the stability analysis using polynomial function for analyzing the aerodynamic parameters and numerical simulations. Due to it will yield intricate terms to ensure stability criterion, therefore we aim to avoid kinds issues by proposing a polynomial homogeneous framework and utilizing Euler's functions for homogeneous systems. Finally, we solve the problem of stabilization under the consideration by SOS (sum of squares) and assign its fuzzy controller based on the feasibility of demonstration of a nonlinear system as an example.

Evaluation of Rock Damage Zone Using Seismic Logging Method (탄성파 점층법을 이용한 암반손상대 평가)

  • Kang Seong-Seung;Hirata Atsuo;Obara Yuzo;Haraguchi Naoyuki
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.50-57
    • /
    • 2006
  • Development of structures such as slope and tunnel, waste disposal, oil and LPG storages, and underground power house and so on, is increasing with the year. The method for appropriate estimation of rock state such as fresh or damaged rocks is also requested with increasing structural development. On these purposes, seismic logging system, which is a simple and easy way for handling as well as small and light, has been developed. Seismic logging method is one of logging tests, which is able to evaluate the state of rock mass with various shapes and is possible to obtain the relatively accuracy data at situ state. In addition, seismic logging method is at to apply to estimate structural behavior, before and after support installed. According to the results obtained from this study, firstly, it is clear that the extent of damage in rock slope due to blasting is able to be evaluated with quantity using seismic logging method, moreover to decide the damage zone in rock slope reasonably. Secondly, it is expected that installing depth of support is able to be decided more effectively and economically, using the results of seismic logging data. Finally, seismic logging method is also able to be applied safety supervision of structures, before and after support installed.

Effect of Environment on Plant Growth of Oriental Melon in South-North Directed Ridges under East-West Oriented Vinyl house ($\cdot$서동 하우스내 이랑위치별 환경과 참외 생육)

  • Shin Yong Seub;Park So Deuk;Kim Jwoo Hwan;Seo Young Jin;Kim Byung Soo
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • This experiment was carried out to investigate the effect of ridge direction (south-north) on temperature and light intensity on early growth of oriental melon under east-west oriented vinyl house cultivation. The air-temperature of minimum between north and south-ridge in the tunnel of vinyl house was $12.5^[\circ}C\;and\;11.3^{\circ}C$ and that of maximum between north and south-ridge was $36.7^{\circ}C\;and\;34.7^{\circ}C$, respectively. The minimum and maximum air-temperature of north-ridge in the tunnel of vinyl house on Feb. 15 were $12^{\circ}C\;and\;2.0^{\circ}C$ higher than those of south-ridge, respectively. The intensity of daylight between south and north-ridge was similar during 9:00-10:30 a.m., that of south-ridge was higher than north-ridge during 10:30-11:30 a.m. and that of north-ridge was higher than south-ridge during 11:30-17:30. The plant growth after 55 days of planting on the north-ridge was prominent cultivation compared to south-ridge. The female flowering and first harvesting day were earlier in north-ridge than in south ridge. The marketable fruits rate and yields (kg/10a) were $6.7\%$ and 218kg higher in north-ridge cultivation than south-ridge, respectively. Differences of marketable fruit rate and yield (kg/10a) in each ridge were significant.

Folate Contents of Oriental Melon (Cucumis melo) Cultivated in Greenhouse Covered with Different Films and Varieties (시설 피복자재와 품종에 따른 참외 엽산 함량)

  • Chun, Hee;Choi, Yeung-Ha;Um, Yeong-Cheol;Paek, Y;Yu, In-Ho;You, Hee-Yong;Hyun, Tai-Sun;Yon, Mi-Yong;Shin, Yong-Seub
    • Journal of Bio-Environment Control
    • /
    • v.17 no.1
    • /
    • pp.32-37
    • /
    • 2008
  • Light transmittance of PO-2 film was 71.2% higher than any other films, because of low amount of pending water and attaching dust on film surface. On dawn, the air temperature of tunnel were higher than that of outdoors as much as between 11.8 and $14.5^{\circ}C$ on Feb. 19 to 20, 2007. The air temperature in the greenhouse covered with PO-2 film was higher than any other films as much as $2.3^{\circ}C$. Analyzing of folate in oriental melon, the folate contents of fruit were between 68.9 and $113.4\;{\mu}g/100\;g$ according to varieties. In winter, the folate contents in the treatment of PO-2 film was higher than that in the treatment of PE film as much as 17%. Above $15^{\circ}C$ in outdoors mean air temperature, the folate contents were as much as between 55.2 and $75.2\;{\mu}g/100\;g$. The folate contents in the treatment of PO-2 film was higher than that in the treatment of PE film as much as 36%.

An Experimental Study on the Fire Monitoring System for Tunnel Using SMA and Fiber Optic Cable (형상기억합금과 광케이블을 이용한 터널의 화재감지 시스템 개발에 관한 실험적 연구)

  • Hwang, Ji-Hyun;Park, Ki-Tae;Lee, Kyu-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.128-134
    • /
    • 2014
  • Recently, design and construction of street tunnels tend to focus on cost reduction and preservation of nature. Accordingly, research is actively being carried out to quickly detect fires when they occur in tunnels, which have partially closed structures. Among such research, fire detection methods using optical fiber sensors have a wide bandwidth and fast transmission speed, while using light as a medium. Therefore, it does not receive electrical interference and there is almost no loss of information during transmission, while also having little noise as well. In relation to this, a fire monitoring system that can accurately detect the location of fires in real time using shape memory alloy and optical cables was developed in this study. In order to verify the developed method, light loss measurement test was conducted according to indoor temperature changes, while also conducting fire simulation tests by installing test beds in common underground zones with different external environments of temperature and distance. Upon carrying out experiments, the fire monitoring system developed in this study was found to be able to detect fires in long distance sections in real time.

Building Large-scale CityGML Feature for Digital 3D Infrastructure (디지털 3D 인프라 구축을 위한 대규모 CityGML 객체 생성 방법)

  • Jang, Hanme;Kim, HyunJun;Kang, HyeYoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.187-201
    • /
    • 2021
  • Recently, the demand for a 3D urban spatial information infrastructure for storing, operating, and analyzing a large number of digital data produced in cities is increasing. CityGML is a 3D spatial information data standard of OGC (Open Geospatial Consortium), which has strengths in the exchange and attribute expression of city data. Cases of constructing 3D urban spatial data in CityGML format has emerged on several cities such as Singapore and New York. However, the current ecosystem for the creation and editing of CityGML data is limited in constructing CityGML data on a large scale because of lack of completeness compared to commercial programs used to construct 3D data such as sketchup or 3d max. Therefore, in this study, a method of constructing CityGML data is proposed using commercial 3D mesh data and 2D polygons that are rapidly and automatically produced through aerial LiDAR (Light Detection and Ranging) or RGB (Red Green Blue) cameras. During the data construction process, the original 3D mesh data was geometrically transformed so that each object could be expressed in various CityGML LoD (Levels of Detail), and attribute information extracted from the 2D spatial information data was used as a supplement to increase the utilization as spatial information. The 3D city features produced in this study are CityGML building, bridge, cityFurniture, road, and tunnel. Data conversion for each feature and property construction method were presented, and visualization and validation were conducted.

Flight Dynamics Analyses of a Propeller-Driven Airplane (I): Aerodynamic and Inertial Modeling of the Propeller

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.345-355
    • /
    • 2014
  • This paper focuses on aerodynamic and inertial modeling of the propeller for its applications in flight dynamics analyses of a propeller-driven airplane. Unsteady aerodynamic and inertial loads generated by the propeller are formulated using the blade element method, where the local velocity and acceleration vectors for each blade element are obtained from exact kinematic relations for general maneuvering conditions. Vortex theory is applied to obtain the flow velocities induced by the propeller wake, which are used in the computation of the aerodynamic forces and moments generated by the propeller and other aerodynamic surfaces. The vortex lattice method is adopted to obtain the induced velocity over the wing and empennage components and the related influence coefficients are computed, taking into account the propeller induced velocities by tracing the wake trajectory trailing from each of the propeller blades. Aerodynamic forces and moments of the fuselage and other aerodynamic surfaces are computed by using the wind tunnel database and applying strip theory to incorporate viscous flow effects. The propeller models proposed in this paper are applied to predict isolated propeller performances under steady flight conditions. Trimmed level forward and turn flights are analyzed to investigate the effects of the propeller on the flight characteristics of a propeller-driven light-sports airplane. Flight test results for a series of maneuvering flights using a scaled model are employed to run the flight dynamic analysis program for the proposed propeller models. The simulations are compared with the flight test results to validate the usefulness of the approach. The resultant good correlations between the two data sets shows the propeller models proposed in this paper can predict flight characteristics with good accuracy.

Optimization of long span portal frames using spatially distributed surrogates

  • Zhang, Zhifang;Pan, Jingwen;Fu, Jiyang;Singh, Hemant Kumar;Pi, Yong-Lin;Wu, Jiurong;Rao, Rui
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.227-237
    • /
    • 2017
  • This paper presents optimization of a long-span portal steel frame under dynamic wind loads using a surrogate-assisted evolutionary algorithm. Long-span portal steel frames are often used in low-rise industrial and commercial buildings. The structure needs be able to resist the wind loads, and at the same time it should be as light as possible in order to be cost-effective. In this work, numerical model of a portal steel frame is constructed using structural analysis program (SAP2000), with the web-heights at five locations of I-sections of the columns and rafters as the decision variables. In order to evaluate the performance of a given design under dynamic wind loading, the equivalent static wind load (ESWL) is obtained from a database of wind pressures measured in wind tunnel tests. A modified formulation of the problem compared to the one available in the literature is also presented, considering additional design constraints for practicality. Evolutionary algorithms (EA) are often used to solve such non-linear, black-box problems, but when each design evaluation is computationally expensive (e.g., in this case a SAP2000 simulation), the time taken for optimization using EAs becomes untenable. To overcome this challenge, we employ a surrogate-assisted evolutionary algorithm (SAEA) to expedite the convergence towards the optimum design. The presented SAEA uses multiple spatially distributed surrogate models to approximate the simulations more accurately in lieu of commonly used single global surrogate models. Through rigorous numerical experiments, improvements in results and time savings obtained using SAEA over EA are demonstrated.

Experimental study on usability of soil pavement using weathered granite soil and organic solidification agent (화강풍화토와 유기계 고화제를 이용한 흙포장의 사용성에 관한 실험적 연구)

  • Hwang, Sung-Pil;Jeoung, Jae-Hyeung;Lee, Yong-Soo;Lee, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.11-21
    • /
    • 2015
  • The method to replace asphalt and cement is needed to reduce the carbon emission on road. Polymeric material which is light and easy to handle while having complex function with less carbon emission would be highly effective when it replaced soil pavement containing cement. This study is intended to identify the usability of soil pavement containing organic solidification agent only through the field test. Pavement on bike trail still satisfied required bearing capacity coefficient in 3 months. Pavement after passing 1.6 bil units of bike through pavement acceleration test that simulated a long-term serviceability during a short-time still remained unaffected, demonstrating a long-term serviceability of soil pavement.