DOI QR코드

DOI QR Code

Characterization of Groundwater Colloids From the Granitic KURT Site and Their Roles in Radionuclide Migration

  • 투고 : 2022.06.23
  • 심사 : 2022.08.30
  • 발행 : 2022.09.30

초록

The fundamental characteristics of groundwater colloids, such as composition, concentration, size, and stability, were analyzed using granitic groundwater samples taken from the KAERI Underground Research Tunnel (KURT) site by such analytical methods as inductively coupled plasma-mass spectrometry, field emission-transmission electron microscopy, a liquid chromatography-organic carbon detector, and dynamic light scattering technique. The results show that the KURT groundwater colloids are mainly composed of clay minerals, calcite, metal (Fe) oxide, and organic matter. The size and concentration of the groundwater colloids were 10-250 nm and 33-64 ㎍·L-1, respectively. These values are similar to those from other studies performed in granitic groundwater. The groundwater colloids were found to be moderately stable under the groundwater conditions of the KURT site. Consequently, the groundwater colloids in the fractured granite system of the KURT site can form stable radiocolloids and increase the mobility of radionuclides if they associate with radionuclides released from a radioactive waste repository. The results provide basic data for evaluating the effects of groundwater colloids on radionuclide migration in fractured granite rock, which is necessary for the safety assessment of a high-level radioactive waste repository.

키워드

과제정보

This work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (No.2021M2E1A1085186 and No.2021M2E1A1085202).

참고문헌

  1. A. Avogadro and G. De Marsily, "The Role of Colloids in Nuclear Waste Disposal", MRS Online Proceedings Library, 26, 495-505 (1983). https://doi.org/10.1557/PROC-26-495
  2. A.B. Kersting, D.W. Efurd, D.L. Finnegan, D.J. Rokop, D.K. Smith, and J.L. Thompson, "Migration of Plutonium in Ground Water at the Nevada Test Site", Nature, 397(6714), 56-59 (1999). https://doi.org/10.1038/16231
  3. A.P. Novikov, S.N. Kalmykov, S. Utsunomiya, R.C. Ewing, F. Horreard, A. Merkulov, S.B. Clark, V.V. Tkachev, and B.F. Myasoedov, "Colloid Transport of Plutonium in the Far-Field of the Mayak Production Association, Russia", Science, 314(5799), 638-641 (2006). https://doi.org/10.1126/science.1131307
  4. J.D.F. Ramsay, "The Role of Colloids in the Release of Radionuclides From Nuclear Waste", Radiochim. Acta, 44/45(1), 165-170 (1988). https://doi.org/10.1524/ract.1988.4445.1.165
  5. J.F. McCarthy and J.M. Zachara, "ES&T Features: Subsurface Transport of Contaminants", Environ. Sci. Technol., 23(5), 496-502 (1989).
  6. M.H. Baik, P.S. Hahn, and H.H. Park, "A Theoretical Study on the Radionuclide Transport Mediated by Pseudo-Colloid in the Fractured Rock Medium", J. Korean Nucl. Soc., 27(4), 532-543 (1995).
  7. T. Schafer, F. Huber, H. Seher, T. Missana, U. Alonso, M. Kumke, S. Eidner, F. Claret, and F. Enzmann, "Nanoparticles and Their Influence on Radionuclide Mobility in Deep Geological Formations", Appl. Geochem., 27(2), 390-403 (2012). https://doi.org/10.1016/j.apgeochem.2011.09.009
  8. C. Degueldre, B. Baeyens, W. Goerlich, J. Riga, J. Verbist, and P. Stadelman, "Colloids in Water From a Subsurface Fracture in Granitic Rock, Grimsel Test Site, Switzerland", Geochim. Cosmochim. Acta, 53(3), 603- 610 (1989). https://doi.org/10.1016/0016-7037(89)90003-3
  9. P. Vilks, H.G. Miller, and D.C. Doern, "Natural Colloids and Suspended Particles in the Whiteshell Research Area, Manitoba, Canada, and Their Potential Effect on Radiocolloid Formation", Appl. Geochem., 6(5), 565-574 (1991). https://doi.org/10.1016/0883-2927(91)90055-T
  10. B. Allard, F. Karlsson, and I. Neretnieks. Concentrations of Particulate Matter and Humic Substances in Deep Groundwaters and Estimated Effects on the Adsorption and Transport of Radionuclides, Swedish Nuclear Fuel and Waste Management Company Technical Report, SKB/TR 91-50 (1991).
  11. P. Vilks, J.J. Cramer, D.B. Bachinski, D.C. Doern, and H.G. Miller, "Studies of Colloids and Suspended Particles, Cigar Lake Uranium Deposit, Saskatchwan, Canada", Appl. Geochem., 8(6), 605-616 (1993). https://doi.org/10.1016/0883-2927(93)90016-A
  12. C. Degueldre, "Colloid Properties in Granitic Groundwater Systems, With Emphasis on the Impact on Safety Assessment of a Radioactive Waste Repository", Mat. Res. Soc. Symp. Proc., 294, 817-823 (1993).
  13. C. Degueldre, I. Triay, J.I. Kim, P. Vilks, M. Laaksoharju, and N. Miekeley, "Groundwater Colloid Properties: A Global Approach", Appl. Geochem., 15(7), 1043-1051 (2000). https://doi.org/10.1016/S0883-2927(99)00102-X
  14. M.H. Baik, P.S. Hahn, and P. Vilks, "Characterization of Natural Colloids Sampled From Deep Granite Groundwater of the Canadian Shield", Environ. Eng. Res., 4(3), 165-176 (1999).
  15. M.H. Baik, J.I. Yun, M. Bouby, P.S. Hahn, and J.I. Kim, "Characterization of Aquatic Groundwater Colloids by a Laser-Induced Breakdown Detection and ICP-MS Combined With an Asymmetric Flow Fieldflow Fractionation", Korean J. Chem. Eng., 24(5), 723-729 (2007). https://doi.org/10.1007/s11814-007-0033-7
  16. E.C. Jung, H.R. Cho, M.R. Park, and M.H. Baik, "Detection of Colloidal Nanoparticles in KURT Groundwater by a Mobile Laser-Induced Breakdown Detection System", J. Korean Radioac. Waste Soc., 9(1), 41-48 (2011). https://doi.org/10.7733/jkrws.2011.9.1.41
  17. D. Aosai, Y. Yamamoto, T. Mizuno, T. Ishigami, and H. Matsuyama, "Size and Composition Analyses of Colloids in Deep Granitic Groundwater Using Microfiltration/Utrafiltration While Mainlining in Situ Hydrochemical Conditions", Colloids Surf. A: Physicochem. Eng. Asp., 461, 279-286 (2014). https://doi.org/10.1016/j.colsurfa.2014.08.007
  18. S.T. Kim, H.R. Cho, E.C. Jung, W. Cha, M.H. Baik, and S. Lee, "Asymmetrical Flow Field-flow Fractionation Coupled With Liquid Waveguide Capillary Cell for Monitoring Natural Colloids in Groundwater", Appl. Geochem., 87, 102-107 (2017). https://doi.org/10.1016/j.apgeochem.2017.10.010
  19. T. Saito, Y. Suzuki, and T. Mizuno, "Size and Elemental Analyses of Nano Colloids in Deep Granitic Groundwater: Implications for Transport of Trace Elements", Colloids Surf. A: Physicochem. Eng. Asp., 435, 48-55 (2013). https://doi.org/10.1016/j.colsurfa.2012.11.031
  20. C. Gueguen, C. Belin, and J. Dominik, "Organic Colloid Separation in Contrasting Aquatic Environments With Tangential Flow Filtration", Water Res., 36(7), 1677-1684 (2002). https://doi.org/10.1016/S0043-1354(01)00374-8
  21. B. Petrusevski, G. Bolier, A.N. Van Breemen, and G.J. Alaerts, "Tangential Flow Filtration: A Method to Concentrate Freshwater Algae", Water Res., 29(5), 1419-1424 (1995). https://doi.org/10.1016/0043-1354(94)00269-D
  22. J. Buffle and G.G. Leppard, "Characterization of Aquatic Colloids and Macromolecules. 1. Structure and Behavior of Colloidal Material", Environ. Sci. Technol., 29(9), 2169-2175 (1995). https://doi.org/10.1021/es00009a004
  23. H.M. Hertz, M. Bertilson, O.V. Hofsten, S.C. Gleber, J. Sedlmair, and J. Thieme, "Laboratory X-ray Microscopy for High-Resolution Imaging of Environmental Colloid Structure", Chem. Geol., 329, 26-31 (2012). https://doi.org/10.1016/j.chemgeo.2011.07.012
  24. M. Plaschke, J. Romer, R. Klenze, and J.I. Kim, "In Situ AFM Study on Sorbed Humic Acid Colloids at Different pH", Colloids Surf. A: Physicochem. Eng. Asp., 160(3), 269-279 (1999). https://doi.org/10.1016/S0927-7757(99)00191-0
  25. M. Filella, J. Zhang, M.E. Newman, and J. Buffle, "Analytical Applications of Photon Correlation Spectroscopy for Size Distribution Measurements of Natural Colloidal Suspensions: Capability and Limitations", Colloids Surf. A: Physicochem. Eng. Asp., 120(1-3), 27-46 (1997). https://doi.org/10.1016/S0927-7757(96)03677-1
  26. T. Bundschuh, R. Knopp, and J.I. Kim, "Laser-Induced Breakdown Detection (LIBD) of Aquatic Colloids With Different Laser Systems", Colloids and Surf. A: Physicochem. Eng. Asp., 177(1), 47-55 (2001). https://doi.org/10.1016/S0927-7757(99)00497-5
  27. M. Bouby, T.N. Manh, H. Geckeis, F.J. Scherbaum, and J.I. Kim, "Characterization of Aquatic Colloids by a Combination of LIBD and ICP-MS Following the Size Fractionation", Radiochim. Acta, 90(9-11), 727- 732 (2002). https://doi.org/10.1524/ract.2002.90.9-11_2002.727
  28. M.H. Baik, J.H. Park, and W.J. Cho, "A Study on the Stability of the Ca-Bentonite Colloids Using a Dynamic Light Scattering Method", J. Korean Soc. Soil Groundwater Environ., 11(3), 12-19 (2006).
  29. M.H. Baik and S.Y. Lee, "Colloidal Stability of Bentonite Clay Considering Surface Charge Properties as a Function of pH and Ionic Strength", J. Ind. Eng. Chem., 16(5), 837-841 (2010). https://doi.org/10.1016/j.jiec.2010.05.002
  30. W.J. Cho, S. Kwon, and J.H. Park, "KURT, a SmallScale Underground Research Laboratory for the Research on a High-Level Waste Disposal", Ann. Nucl. Energy, 35(1), 132-140 (2008). https://doi.org/10.1016/j.anucene.2007.05.011
  31. J.H. Ryu, J.S. Kwon, G.Y. Kim, and Y.K. Koh, "Geochemical Characterization of Rock-Water Interaction in Groundwater at the KURT Site", J. Korean Radioac. Waste Soc., 10(3), 189-197 (2012). https://doi.org/10.7733/jkrws.2012.10.3.189
  32. M.H. Baik and J.K. Lee, "Long-term Mobility of Uranium in the Granitic KURT Site Using Isotopic Analysis and Sequential Chemical Extraction", J. Radioanal. Nucl. Chem., 326(2), 1173-1183 (2020). https://doi.org/10.1007/s10967-020-07380-6
  33. A. Courdouan, I. Christl, S. Meylan, P. Wersin, and R. Kretzschmar, "Isolation and Characterization of Dissolved Organic Matter From the Callovo-Oxfordian Formation", Appl. Geochem., 22(7), 1537-1548 (2007). https://doi.org/10.1016/j.apgeochem.2007.04.001
  34. S.A. Huber, A. Balz, M. Abert, and W. Pronk, "Chacterisation of Aquatic Humic and non-humic Matter With Size-Exclusion Chromatography-Organic Carbon Detection-Organic Nitrogen Detection (LC-OCDOND)", Water Res., 45(2), 879-885 (2011). https://doi.org/10.1016/j.watres.2010.09.023
  35. H. Rutlidge, L.K. McDonough, P. Oudone, M.S. Andersen, K. Meredith, K. Chinu, M. Peterson, and A. Baker, "Characterisation of Groundwater Dissolved Organic Matter Using LC-OCD: Implications for Water Treatment", Water Res., 188, 116422 (2021). https://doi.org/10.1016/j.watres.2020.116422
  36. S. Bhattacharjee, "DLS and Zeta Potential - What They are and What They are not?", J. Control. Release, 235, 337-351 (2016). https://doi.org/10.1016/j.jconrel.2016.06.017
  37. A.B. Kersting, "Plutonium Transport in the Environment", Inorg. Chem., 52(7), 3533-3546 (2013). https://doi.org/10.1021/ic3018908
  38. E. Tipping and D. Cooke, "The Effects of Adsorbed Humic Substances on the Surface Charge of Goethite (α-FeOOH) in Fresh Waters", Geochim. Cosmochim. Acta, 46(1), 75-80 (1982). https://doi.org/10.1016/0016-7037(82)90292-7
  39. M. Filella, "Colloidal Properties of Submicron Particles in Natural Waters", in: Environmental Colloids and Particles: Behavior, Separation and Characterisation, K.J. Wilkinson and J.R. Lead, eds., 17-93, John Wiley & Sons Ltd, Chichester (2007).
  40. Nationale Genossenschaft fur die Lagerung radioaktiver Abfalle, Pocos de Caldas: Nature's Experiments, Nagra bulletine 1/193 (1993).